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0. Introduction

Throughout this paper we shall only be concerned with the combinatorial
category, consisting of simplicial complexes and piecewise-linear maps. It is the
purpose of the paper to prove intuitively obvious topological theorems which are
interesting in the Morse theory of 3-manifolds. The theorems concern "knot
types'' of embeddings of a closed (=compact, without boundary), connected and
orientable surface Mp of genus p into the 3-dimensional sphere S3.

As widely known, a surface Mp in S3, denoted by (MpdS3), is obtained
from some 2-spheres by adding handles, Fox [3] and Homma [5]. Using the
fact, we shall define a complexity <$, ί>, a pair of natural numbers, for the knot
type of the (MpdS3) in §1. After establishing a canonical representative for
the knot type of (MpC.Sz) in §2, we first consider some non-existence results
in §3. In §4 and §5, we construct some pairs (Λf^c*S3)'s for some complexities
O, ί>'s.

In the paper, homeomorphism is denoted by ^, while ~ and ̂  refer to
homotopy and homology, respectively. dX, cl (X) and °X denote, respectively,
the boundary, the closure and the interior of a manifold X. By D" and Sn~l

we shall denote the standard rc-cell and the standard (n—l)-sphere 8Z)Λ, respec-
tively, and particularly, D1=[— 1, 1].

1. Definitions and notation

First let us explain several definitions and notation, and formulate our main
theorem.

In general, we shall denote by M a compact orientable surface, and *(M)
and g(M) stand for the number of connected components of M and the total
genus of M, respectively.

We shall say that a submaifold X of a manifold Y is properly embedded (or
simply proper) if X Γi 3 Y= QX

By (McM3) we denote a pair of mainfolds such that a 3-manifold M3 and


