Suzuki, S. Osaka J. Math. 11 (1974), 113-127

ON A COMPLEXITY OF A SURFACE IN 3-SPHERE

Dedicated to Professor Ralph H. Fox for his 60th birthday

SHIN'ICHI SUZUKI

(Received June 29, 1973)

0. Introduction

Throughout this paper we shall only be concerned with the combinatorial category, consisting of simplicial complexes and piecewise-linear maps. It is the purpose of the paper to prove intuitively obvious topological theorems which are interesting in the Morse theory of 3-manifolds. The theorems concern "knot types" of embeddings of a closed (=compact, without boundary), connected and orientable surface M_p of genus p into the 3-dimensional sphere S^3 .

As widely known, a surface M_p in S^3 , denoted by $(M_p \subset S^3)$, is obtained from some 2-spheres by adding handles, Fox [3] and Homma [5]. Using the fact, we shall define a complexity $\langle s, t \rangle$, a pair of natural numbers, for the knot type of the $(M_p \subset S^3)$ in §1. After establishing a canonical representative for the knot type of $(M_p \subset S^3)$ in §2, we first consider some non-existence results in §3. In §4 and §5, we construct some pairs $(M_p \subset S^3)$'s for some complexities $\langle s, t \rangle$'s.

In the paper, homeomorphism is denoted by \simeq , while \simeq and \sim refer to homotopy and homology, respectively. ∂X , cl (X) and $^{\circ}X$ denote, respectively, the boundary, the closure and the interior of a manifold X. By D^{n} and S^{n-1} we shall denote the standard *n*-cell and the standard (n-1)-sphere ∂D^{n} , respectively, and particularly, $D^{1}=[-1, 1]$.

1. Definitions and notation

First let us explain several definitions and notation, and formulate our main theorem.

In general, we shall denote by M a compact orientable surface, and ${}^{*}(M)$ and g(M) stand for the number of connected components of M and the total genus of M, respectively.

We shall say that a submaifold X of a manifold Y is properly embedded (or simply proper) if $X \cap \partial Y = \partial X$.

By $(M \subset M^3)$ we denote a pair of mainfolds such that a 3-manifold M^3 and