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1. Introduction. In the study of principal actions of a group G, a
fundamental role is played by the classifying space B;. Thus it is natural
to seek algebraic invariants which describe the geometrical properties of these
spaces. For the purpose of studying their homology and cohomology, Rothenberg
and Steenrod [15] introduced a variation of the Eilenberg-Moore spectral sequence
and gave several applications. Hodgkin [11] and Anderson and Hodgkin [2]
recast the cohomological form of this spectral sequence into K*-theory and used
it to study the K*-theory of Lie groups and Eilenberg-MacLane spaces.

It is our purpose here to extend the homological form of the spectral se-
quence to arbitrary multiplicative generalized homology theories and give
some brief applications. Since the constructions require a Kiinneth isomorphism,
we must introduce cyclic groups of coefficients and investigate the existence of
associated multiplicative structures. This is done in §2 and follows the correspond-
ing constructions of Araki and Toda [3] for cohomology. In §3 the spectral
sequence is described and the E*-stage and edge homomorphism are identified.

The applications are given in §4. These include the computation of the
K-groups of certain Eilenberg-MacLane spaces, using results of Anderson and
Hodgkin [2]. The implications of these computations in complex bordism are
noted briefly. Finally we give the following generalization of a theorem of
Borel [5]: If A4 is a multiplicative homology theory, p is a prime, hx(pt.; Z,)=R
is zero in odd dimensions and G is a group having 44(G; Z,) an exterior algebra
over R on a finite number of odd dimensional generators, then A4(Bg; Z,) is a
modified polynomial algebra over R on corresponding generators of one dimen-
sion higher.

We assume throughout that spaces are in the category A of spaces having
the homotopy type of a CW complex with finite skeleta and that all homology
theories are additive. It is a pleasure to acknowledge recent conversations
with Gary Hamrick on this and related subjects.

2. Multiplicative homology theories. Let 4 be a generalized homology



