ON THE SPECTRAL DISTRIBUTION OF A DISORDERED SYSTEM AND THE RANGE OF A RANDOM WALK

MASATOSHI FUKUSHIMA

(Received July 17, 1973)

1. Introduction

Consider the ν -dimensional lattice Z^{ν} . We define a second order difference operator H° by

$$(H^{\circ}u)(a) = \frac{\sigma^2}{2} \sum_{i=1}^{\nu} \{u(a_1, \dots, a_i-1, \dots, a_{\nu}) - 2u(a) + u(a_1, \dots, a_i+1, \dots, a_{\nu})\},\ a \in Z^{\nu}, \ u \in C_0(Z^{\nu}),$$

where σ is a positive constant and $C_0(Z^{\nu})$ is the space of functions on Z^{ν} with finite supports. Let $\{q(a)=q(a, \omega); a \in Z^{\nu}\}$ be a family of independent, identically distributed non-negative random variables defined on some probability space (Ω, \mathcal{B}, P) . We are then concerned with the difference operator H^{ω} depending on the random parameter $\omega \in \Omega$:

(1)
$$(H^{\omega}u)(a) = (H^{\circ}u)(a) - q(a, \omega)u(a), \quad a \in Z^{\nu}$$

The operator $-H^{\omega}$, considered as a linear transform over $C_0(Z^{\nu})$, is a nonnegative definite symmetric operator on $L^2(Z^{\nu})$ and has a unique self-adjoint extension $-\overline{H}^{\omega}$. Express $-\overline{H}^{\omega}$ as $-\overline{H}^{\omega} = \int_{[0,\infty)} x dE_x^{\omega}$ by the associated spectral family $\{E_x^{\omega}, -\infty < x < \infty\}$ and put $\rho^{\omega}(x) = (E_x^{\omega}I_0, I_0)$, where (,) is the L^2 -inner product and $I_a(a') = \delta_{aa'}$, $a, a' \in Z^{\nu}$.

Denote by $\langle \rangle$ the expectation with respect to the probability measure P and set

(2)
$$\rho(x) = \langle \rho \cdot (x) \rangle, -\infty < x < \infty.$$

 $\rho(x)$ is a probability distribution function vanishing on $(-\infty, 0)$. We call this the spectral distribution function associated with the ensemble of operators $\{H^{\omega}, \omega \in \Omega\}$ or rather with the disordered dynamical system governed by H^{ω} 's (e.g. a tight binding electron model [4]).

Our main aim is to show in §4 the following asymptotic behaviours of $\rho(x)$ near the origin.