Picco, D.J. and Platzeck, M.I. Osaka J. Math. 11 (1974), 15-21

ON FREE ABELIAN EXTENSIONS

D.J. PICCO AND M.I. PLATZECK

(Received August 9, 1973)

Introduction. Let R be a commutative ring, and G a finite abelian group. In [2] (see also [5]) the set of isomorphism classes of Galois extensions of R with group G that have normal bases is described cohomologically by means of Harrison's complex of RG; to this end, Galois algebras are first classified and then Galois extensions with normal basis as a particular case. In this paper we use a different approach to classify Galois extensions which are free as R-modules; the restriction of this classification to extensions with normal basis yields the cohomological description of [2].

Free Abelian Extensions

Let R be a commutative ring, and G a finite abelian group. Recall that a faithful R-algebra A is said to be a Galois extension of R with respect to a representation of G by R-algebra automorphisms of A if the following equivalent conditions are satisfied:

1) $A^{G}=R$ and the map M_{A} from $A \otimes_{R} A$ to the ring of functions from G to A defined by $M_{A}(x \otimes y)(\sigma) = x\sigma(y)$ is an R-module isomorphism.

2) $A^{G}=R$, A is a finitely generated projective R-module and $L:AG \rightarrow \operatorname{End}_{R}(A)$ is an R-algebra isomorphism, where AG is the twisted group ring of G over A and L is defined by $L(a\sigma)(x)=a\sigma(x)$.

Let *E* denote the ring of functions from *G* to *R*; if we let *G* act on *E* by means of (σf) $(\eta)=f(\sigma^{-1}\eta)$ then *E* is Galois over *R* with group *G*; we have E= $\oplus Re_{\sigma}$ with $\sum e_{\sigma}=1$, $e_{\sigma}e_{\eta}=\delta_{\sigma,\eta}$, e_{σ} and $\sigma(e_{\eta})=e_{\sigma\eta}$. Clearly the condition 1) can be reformulated as follows:

3) $A^{G} = R$ and $M_{A}: A \otimes A \to E \otimes A$ defined by $M_{A}(x \otimes y) = \sum e_{\sigma} \otimes x\sigma(y)$ is an *R*-module isomorphism.

Note that for $M=M_E: E\otimes E \to E\otimes E$ we have $M(e_{\alpha}\otimes e_{\beta})=e_{\alpha\beta^{-1}}\otimes e_{\alpha}$. Since $EG\cong \operatorname{End}_R(E)$ we have $EG\otimes EG\cong \operatorname{End}_R(E\otimes E)$; thus considering $E\otimes E$ as a left module over $EG\otimes EG$, the *R*-module automorphisms of $E\otimes E$ are produced by left multiplications by units of $EG\otimes EG$.

Suppose the Galois extension A is free as an R-module. Then there exists an R-module isomorphism $j: A \to E$ and $M^{-1} \cdot 1 \otimes j \cdot M_A \cdot j^{-1} \otimes j^{-1}: E \otimes E \to E \otimes E$ is an isomorphism of R-modules. Therefore there exists a unique $u \in U(EG \otimes EG)$