Miyamoto, I. Osaka J. Math. 11 (1974), 9-13

MULTIPLY TRANSITIVE PERMUTATION GROUPS AND ODD PRIMES

IZUMI MIYAMOTO

(Received June 11, 1973)

In [4] M. Hall determined all 4-fold transitive permutation groups whose stabilizer of 4 points is of odd order. In this note we give some analogous version of M. Hall's theorem for any odd prime p on 3p-fold transitive permutation groups. We note that such a version is also already obtained by E. Bannai [1] on (p^2+p) -fold transitive permutation groups.

Theorem. Let p be an odd prime. Let G be a 3p-fold transitive permutation group on $\Omega = \{1, 2, \dots, n\}$. If the order of a stabilizer of 3p points in G is prime to p, then $G = S_n (3p \le n \le 4p)$ or $G = A_n (3p+2 \le n \le 4p)$.

Our notation follows Nagao [6]. Let us recall some of them: For a set S of permutations on Ω the set of the points left fixed by S will be denoted by I(S). For a permutation x let $\alpha_i(x)$ denote the number of *i*-cycles. Also let $I^c(S) = \Omega - I(S)$ and $\alpha(x) = \alpha_1(x)$. The order of a permutation x will be denoted by o(x). $p \mid o(x)$ will mean that o(x) is divisible by p and $p \not\prec o(x)$ will mean that o(x) is not divisible by p.

1. On 2*p*-fold transitive groups

The next lemma which is indebted to Nagao [6] is essential in the present work.

Lemma 1.1. Let X be a p-fold transitive permutation group on a finite set Ω . Let P be a Sylow p-subgroup of X. If P is semiregular on Ω -I(P), then

- (i) X has only one conjugacy class of the elements of order p, and
- (ii) for an element u of order p, $C_x(u)$ is transitive on $I^c(u)$.

Proof. Since X is p-fold transitive,

(1)
$$\frac{|X|}{p} = \sum_{x \in \mathcal{X}} \alpha_p(x),$$

by a result of Frobenius [1][2]. On the other hand, since P is semiregular, any element x with p-cycle is uniquely expressed as a product of an element