Harada, M. Osaka J. Math. 10 (1973), 585-596

PERFECT CATEGORIES IV

(QUASI-FROBENIUS CATEGORIES)

MANABU HARADA

(Received November 8, 1972)

The author defined perfect Grothendieck categories and studied them [11]. In [12], [13] he developed [11] and determined hereditary perfect categories and hereditary perfect and *QF*-3 categories.

In this note, as a continuos work we define quasi-Frobenius categories (briefly QF) and generalize some properties of QF-rings.

Let \mathfrak{A} be a Grothendieck category. We always assume \mathfrak{A} contains a generating set $\{G_{\sigma}\}_{I}$ of small objects G_{σ} , e.g. functor categories. If every projective objects in \mathfrak{A} are injective, we call \mathfrak{A} a QF-category. As we see in examples of QF-categories, some important properties of QF-rings are not inherited to QF-categories.

The object of this paper is to fill those gaps. We assume mainly that G_{σ} 's are projective, then *QF*-categories are perfect. It is clear that all of results in the category \mathfrak{M}_R of modules over a ring R with identity are not valid in perfect categories \mathfrak{A} . However, modifying proofs in \mathfrak{M}_R , we sometimes succeed to extend some properties in \mathfrak{M}_R to \mathfrak{A} . All of theorems in this note are well known in \mathfrak{M}_R and so we shall give often only methods how to modify proofs in \mathfrak{M}_R .

In §1 we generalize the notion of Σ -injective [5] and obtain [5], Proposition 3 in \mathfrak{A} . We define a *QF*-category in §2 and generalize results in [4] and [14]. In §3 we deal with a problem whether a *QF*-category has the following property or not: every injetives are projective, (see [6]). In the final sction, we give some supplementary results of [10].

In this paper, rings S need not to have the identity, unless otherwise stated. We refer the readr to [11], [12] and [13] for notations and definitions.

1. Σ -injective

Let \mathfrak{A} be a Grothendieck category. We always assume that \mathfrak{A} has a generating set $\{G_a\}_I$ of small objects G_a .

¹⁾ See [11] and [12] for the definitions.