PROJECTIVE DIMENSION OF COMPLEX BORDISM MODULES OF CW-SPECTRA, II

HIDEAKI ÖSHIMA AND ZEN-ICHI YOSIMURA

(Received December 18, 1972)

In the previous paper [I] with the same title we tried to extend some results of [6, 8 and 9] to connective CW-spectra X. And we gave necessary and sufficient conditions that the Thom homomorphism

$$\mu = \mu \langle 0 \rangle : MU_*(X) \rightarrow MU \langle 0 \rangle_*(X) \cong H_*(X)$$

is an epimorphism and that the homomorphism

$$\zeta = \mu_{Td}\langle 1 \rangle : MU_*(X) \rightarrow MU_{Td}\langle 1 \rangle_*(X) \cong k_*(X)$$

(lifting the Thom homomorphism μ_C : $MU_*(X) \rightarrow K_*(X)$) is an epimorphism. In the present paper we study conditions that

$$\mu \langle n \rangle : MU_*(X) \rightarrow MU \langle n \rangle_*(X)$$

is an epimorphism for a general $n \ge 0$.

As our main results we have

Theorem 1. Let X be a connective CW-spectrum and $0 \le n < \infty$. The following conditions are equivalent:

- I) $\mu\langle n\rangle$: $MU_*(X)\rightarrow MU\langle n\rangle_*(X)$ is an epimorphism;
- II) $\mu\langle n\rangle$ induces an isomorphism $\tilde{\mu}\langle n\rangle$: $MU\langle n\rangle_* \otimes MU_*(X) \rightarrow MU\langle n\rangle_*(X)$;
- III) $\operatorname{Tor}_{p,*}^{MU_*}(MU\langle n\rangle_*, MU_*(X))=0$ for all $p\geq 1$;
- III)' $\operatorname{Tor}_{V_*}^{MU_*}(MU\langle n\rangle_*, MU_*(X))=0.$

Theorem 2. Let X be a connective CW-spectrum and $0 \le n < \infty$. If one of the equivalent conditions stated in Theorem 1 is satisfied, then

0) hom $\dim_{MU_*}MU_*(X) \leq n+1$.

We use all notations and notions defined in [I] and quote the theorem of [I] in such a form as "Theorem I. 4".