PROJECTIVE DIMENSION OF COMPLEX BORDISM MODULES OF CW-SPECTRA, I

ZEN-ICHI YOSIMURA

(Received December 15, 1972)

Let $MU_*()$ be the (reduced) complex bordism theory defined on the Boardman's stable category [4] of CW-spectra. Recall that $MU_* (\equiv MU_*(S^\circ)) \cong Z[x_1, x_2, \cdots]$, deg $x_i = 2i$. In [3] Baas has constructed a tower of homology theories

$$MU_*() = MU_{\langle \infty \rangle_*}() \rightarrow \cdots \rightarrow MU_{\langle n \rangle_*}() \rightarrow \cdots \rightarrow MU_{\langle 0 \rangle_*}() \cong H_*()$$

such that $MU\langle n \rangle_* (\equiv MU\langle n \rangle_*(S^\circ)) \cong Z[x_1, \dots, x_n]$, which factorizes the Thom homomorphism $\mu: MU_*() \to H_*()$. When $Td(x_1)=1$ and $Td(x_j)=0$ for all $j \ge 2$ (it is possible to choose ring generators x_i of MU_* with such properties), we shall write $MU_{Td}\langle n \rangle_*()$ instead of $MU\langle n \rangle_*()$ for emphasis. $MU_{Td}\langle 1 \rangle_*()$ can be identified with the connective homology K-theory $k_*()$. Then the tower of homology theories

 $MU_{*}() \to \cdots \to MU_{Td} \langle n \rangle_{*}() \to \cdots \to MU_{Td} \langle 1 \rangle_{*}() \cong k_{*}()$

factorizes the homomorphism $\zeta: MU_*() \to k_*()$ lifting the Thom homomorphism $\mu_C: MU_*() \to K_*()$.

Under the assumption that X is a finite CW-complex, Conner, Smith and Johnson ([6] and [9]) investigated conditions that the Thom homomorphism μ : $MU_*(X) \rightarrow H_*(X)$ is an epimorphism, and that the homomorphism $\zeta: MU_*(X) \rightarrow k_*(X)$ is an epimorphism. In the present paper we try to extend these results to a CW-spectrum.

In §1 we study some basic properties of CW-spectra and homology theories $MU\langle n \rangle_*()$ for the sake of our later references.

Landweber [10] indicated that there exists a MU_* -resolution for a CW-spectrum as well as a finite CW-complex (Theorem 1). In §2 we construct two spectral sequences

i) $E \langle n \rangle_{p,q}^2(X) = \operatorname{Tor}_{p,q}^{MU_*}(MU \langle n \rangle_*, MU_*(X)) \Rightarrow MU \langle n \rangle_*(X)$ and