Kanzaki T. and Kitamura, K. Osaka J. Math. 9 (1972), 225-229

ON PRIME IDEALS OF A WITT RING OVER A LOCAL RING

TERUO KANZAKI AND KAZUO KITAMURA

(Received August 9, 1971)

In this note, we consider commutative local rings with invertible element 2, and give a relation between an ordered local ring and a prime ideal of Witt ring over it which is a generalization of the results of Lorenz and Leicht [3] related to prime ideals of Witt ring over a field. By [5], any non-degenerate and finitely generated projective quadratic module (V, q) over a local ring R can be written as a form $(V, q) = \langle a_1 \rangle \perp \langle a_2 \rangle \perp \cdots \perp \langle a_n \rangle$, where a_i is in the unit group U(R) of R and $\langle a_i \rangle$ denotes a rank one free quadratic submodule $(Rv_i, q | Rv_i)$ such that $q(v_i) = \frac{a_i}{2}$. If, for any element a in U(R), the element having the representative $\langle a \rangle$ in the Witt ring W(R) is denoted by a, then any element of W(R) can be written as a sum of elements of U(R). We use \perp , \top and \otimes for the notations of sum, difference and product in W(R). In §1, we have essentially same argument for Witt ring over a local ring as one in [3]. In $\S2$, we study about an ordered local ring R which is an ordered ring such that every unit in R is either >0 or <0, and give a generalization of Sylvester's theorem. In §3, we give an one to one correspondence between such orderings on R and prime ideals \mathfrak{B} of W(R) such that $W(R)/\mathfrak{P}\approx Z$. Throughout this paper, we assume that the ring R is commutative local ring with invertible element 2, and every R-module is unitary.

1. Let R be a local ring with the maximal ideal m and the unit group U(R). Since $\langle a \rangle \otimes_R \langle b \rangle \approx \langle ab \rangle$ for $a, b \in U(R)$, we have $(a \perp 1) \otimes (a \top 1) = a^2 \top 1 = 1 \perp (-1) = 0$ in W(R) for any a in U(R). Therefore, we have the following analogous argument on local ring R to [3]. If \mathfrak{P} is any prime ideal of W(R), then any element a in U(R) is either $a \equiv 1 \pmod{\mathfrak{P}}$ or $a \equiv -1 \pmod{\mathfrak{P}}$. We denote $\mathcal{E}_{\mathfrak{P}}(a) = 1$ or -1, if $a \equiv 1 \pmod{\mathfrak{P}}$ or $a \equiv -1 \pmod{\mathfrak{P}}$, respectively. Then for any element $\alpha \in W(R)$, say $\alpha = a_1 \perp a_2 \perp \cdots \perp a_n$ for $a_i \in U(R)$, we have $\alpha \equiv \mathcal{E}_{\mathfrak{P}}(a_1) \perp \mathcal{E}_{\mathfrak{P}}(a_2) \perp \cdots \perp \mathcal{E}_{\mathfrak{P}}(a_n) \pmod{\mathfrak{P}}$, therefore there exists an epimorphism $Z \rightarrow W(R)/\mathfrak{P}$, and so $W(R)/\mathfrak{P} \approx Z$ or $\approx Z/(p)$ for some prime number p in the integers Z. Accordingly, we have