BRAUER GROUPS OF ALGEBRAIC FUNCTION FIELDS AND THEIR ADÈLE RINGS

Kenji YOKOGAWA

(Received November 25, 1970)

Introduction. Let K be an algebraic number field and $\{\mathfrak{p}\}$ be the valuations of K, then related to Takagi-Artin's class field theory, the following exact sequence is well-known (c.f. Hasse [5]);

(1)
$$0 \to Br(K) \to \bigoplus_{\mathfrak{p}} Br(K_{\mathfrak{p}}) \to Q/Z \to 0$$

where $K_{\mathfrak{p}}$ is the completion of K with respect to \mathfrak{p} . In the Seminar 1966 at Bowdoin College, G. Azumaya [4] showed that the middle term of (1) is isomorphic to the Brauer group of the adèle ring A_K of K and that the following diagram with canonical arrows is commutative;

(2)
$$0 \to Br(K) \xrightarrow{\mathcal{P}}_{\mathfrak{p}} Br(K_{\mathfrak{p}}) \xrightarrow{\mathcal{Q}}_{\mathcal{Q}} Q/Z \to 0$$
$$\xrightarrow{\mathcal{P}}_{\mathcal{P}} Br(A_{K}) \xrightarrow{\mathcal{P}}_{\mathcal{P}} Q/Z \to 0$$

But on an algebraic function field, the class field theory does not hold except the case of finite constant field (Artin-Whalpe [1]), so the analogies of (1), (2) must have fallen.

The purpose of this paper is to clarify the relations of the Brauer group of the adèle ring of a function field, to the Brauer group of a function field and to Galois cohomologies.

We use the following notations:

- k : a perfect field
- \bar{k} : the algebraic closure of k
- F: an algebraic function field of one variable over k i.e. F/k is finitely generated, k is algebraically closed in F and the degree of transcendency of F/k is one

 $\bar{F} = F \cdot \bar{k}$: the field theoretic compositum of F and \bar{k}

- \mathfrak{p} : a prime divisor of F over k
- F_{p} : the completion of F with respect to p
- $\mathfrak{O}_{\mathfrak{p}}$: the valuation ring of $F_{\mathfrak{p}}$