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HYPERSURFACES W I T H PARALLEL RICCI TENSOR
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0. Introduction

The purpose of this paper is to classify those Riemannian manifolds with
parallel Ricci tensor which arise as hypersurfaces in real space forms. H. B.
Lawson, Jr. [1] performed this classification under the assumption of constant
mean curvature. Lawson's result may be divided into two parts-determination
of the local geometry on the hypersurface, and a rigidity theorem.

In the following, we prove that no assumption on the mean curvature is neces-
sary unless the dimension is 2 or the hypersurface and the ambient space have the
same constant curvature. See Theorem 10.

l The standard examples

We consider first some special complete hypersurfaces which will serve as
models in our discussion. M is the ambient space, M is the hypersurface and /:
M—>Mis an isometric immersion. In each of the examples, M is a submanifold
of M and / is the inclusion mapping.

For M=En+1

y we have as our model hypersurfaces, hyperplanes, spheres, and
cylinders over spheres.

For M=Sn+1(c), we have great spheres, small spheres, and products of
spheres. The latter may also be thought of as the intersection of two cylinders
over spheres in En+2.

All of the above are explicitly written out in [2] together with their second
fundamental forms. We consider the real hyperbolic space of curvature c<0
(which we denote by Hn+1(c)) in more detail here since the analogous facts are
omitted from [2].

For vectors X and Y in Rn+\ we setg(X, Y)= Σ χiγi-X»+*γn+\ For
1 1=sl

given c<0, we define R= ,—= . Then
V — c

Hn+\c) = {x<=Rn+2\g(x9 x) = -R2 and * Λ + 2 >0}
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