Oyama, T. Osaka J. Math. 8 (1971), 99-130

ON MULTIPLY TRANSITIVE GROUPS X

Dedicated to Professor Keizo Asano on his 60th birthday

Tuyosi OYAMA

(Received May 27, 1970)

1. Introduction

In this paper we shall prove the following theorems.

Theorem 1. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$ where n > 4. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following two conditions :

(i) P is a nonidentity semi-regular group.

(ii) P fixes exactly r points.

Then

- (I) If r=4, then $|\Omega|=6$, 8 or 12, and $G=S_6$, A_8 or M_{12} respectively.
- (II) If r=5, then $|\Omega|=7$, 9 or 13. In particular, if $|\Omega|=9$, then $G \leq A_9$, and if $|\Omega|=13$, then $G=S_1 \times M_{12}$.
- (III) If r=7 and $N_G(P)^{I(P)} \leq A_7$, then $G=M_{23}$.

In a previous paper [10] we proved that if G is a 4-fold transitive group and a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity, then P fixes exactly four, five or seven points. Therefore the following corollary is an immediate consequence of Theorem 1.

Corollary. Let G be a 4-fold transitive group on Ω and assume that a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity. For a point t of $\Omega - I(P)$, assume that a Sylow 2-subgroup R of the stabilizer of any four points in $N_G(P_t)^{I(P_t)}$ satisfies the following two conditions:

- (i) R is a nonidentity semi-regular group.
- (ii) |I(R)| = |I(P)|.

Then one of the conclusions in Theorem 1 holds for $N_G(P_t)^{I(P_t)}$. In particular, if t is a point of a minimal P-orbit, then $N_G(P_t)^{I(P_t)}$ satisfies the conditions (i) and (ii).

The last assertion of this corollary follows from Lemma 1 of [9]. By using these theorems we have the following