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0. Introduction

The problem of characterizing positive additive functionals of Markov

processes by means of their expectation (called characteristic) has been studied

by Volkonsky [5], Meyer [Part II of 3], and Motoo and S. Watanabe [1]. In

the present paper we shall give a characterization of square-integrable additive

functionals with expectation zero.

Our method is different from, and more elementary than, those of Meyer,

Motoo and S. Watanabe; it is a version of the method adopted by Meyer [Part

I of 3, 4] in the study of absolute continuity of two Markov processes. Our

method is also used for characterizing almost additive functionals without

assuming the strong Markov property.

Let X=(#f, Px, x^. S) be a Markov process with a Markov transition function

(Pt(x, S)=l). Let ^ be a locally integrable (not necessarily positive) almost

additive functional of X, and let us define a system of kernels^ (Qt(x, dy)) on

Sby

(0.1) Qt(xyE) = Ex(At-lE(xt)),

where \E is the indicator of the set E. Qt(x, dy) is absolutely continuous with

respect to the transition function Pt(x, dy)=Px(xt^dy)i and the following

equation, called the characteristic equation, holds

(0.2) PsQt+QsPt=Qs+t for any s, fe

If a system of kernels (Qt(x, dy); t^O) on S satisfies the characteristic

equation and if each Qt(xy dy) is absolutely continuous with respect to Pt{x, dy)

we will call it a system of characteristic kernels. The density of Qt(x, dy) with

(1) A map k(x, dy) from S X F(S) to ( — <χ>, oo] is called a kernel if it satisfies the following
properties:
(i) For each E<EF(S), k(-f E) is a F(S)-measurable function on S.

(ii) For each x^S} k(x, •) is a measure on ¥(S) with a finite total variation.


