ON A CHARACTERIZATION OF CERTAIN ADDITIVE FUNCTIONALS OF MARKOV PROCESSES

Tosiaki KORI

(Received February 1, 1968)

0. Introduction

The problem of characterizing positive additive functionals of Markov processes by means of their expectation (called characteristic) has been studied by Volkonsky [5], Meyer [Part II of 3], and Motoo and S. Watanabe [1]. In the present paper we shall give a characterization of square-integrable additive functionals with expectation zero.

Our method is different from, and more elementary than, those of Meyer, Motoo and S. Watanabe; it is a version of the method adopted by Meyer [Part I of 3, 4] in the study of absolute continuity of two Markov processes. Our method is also used for characterizing almost additive functionals without assuming the strong Markov property.

Let $\mathbf{X} = (x_t, P_x, x \in S)$ be a Markov process with a Markov transition function $(P_t(x, S)=1)$. Let A be a locally integrable (not necessarily positive) almost additive functional of \mathbf{X} , and let us define a system of kernels⁽¹⁾ $(Q_t(x, dy))$ on S by

$$(0.1) Q_t(x, E) = E_x(A_t \cdot 1_E(x_t)),$$

where 1_E is the indicator of the set *E*. $Q_t(x, dy)$ is absolutely continuous with respect to the transition function $P_t(x, dy) = P_x(x_t \in dy)$, and the following equation, called the *characteristic equation*, holds;

$$(0.2) P_s Q_t + Q_s P_t = Q_{s+t} for any s, t \ge 0.$$

If a system of kernels $(Q_t(x, dy); t \ge 0)$ on S satisfies the characteristic equation and if each $Q_t(x, dy)$ is absolutely continuous with respect to $P_t(x, dy)$ we will call it a system of characteristic kernels. The density of $Q_t(x, dy)$ with

⁽¹⁾ A map k(x, dy) from $S \times F(S)$ to $(-\infty, \infty]$ is called a *kernel* if it satisfies the following properties:

⁽i) For each $E \in \mathbf{F}(S)$, $k(\cdot, E)$ is a $\mathbf{F}(S)$ -measurable function on S.

⁽ii) For each $x \in S$, $k(x, \cdot)$ is a measure on F(S) with a finite total variation.