ON DIFFERENTIABILITY AND ANALYTICITY OF SOLUTIONS OF WEIGHTED ELLIPTIC BOUNDARY VALUE PROBLEMS

HIROKI TANABE

(Received March 16, 1965)

The present paper is concerned with the differentiability and analyticity of solutions of weighted elliptic boundary value problems (see [2] for the definition of weighted ellipticity)

$$A(x, t, D_x, D_t)u(x, t) = f(x, t), \qquad x \in \Omega, \qquad (0.1)$$

$$B_{j}(x, t, D_{x}, D_{t})u(x, t) = 0, \qquad x \in \partial\Omega, \quad j = 1, \dots, m, \qquad (0.2)$$

in some cylindrical domain with Ω as its base, where we denote the order type of A by (2m, l). We first investigate such regularity properties of the solution u considered as a function of t with values in $L^2(\Omega)$ or $H_{2m}(\Omega)$ and then the same properties of u as a numerical function of all independent variables (x, t). In [2] S. Agmon and L. Nirenberg proved the differentiability and analyticity in t of the solutions of (0, 1)-(0, 2) in $L^p(\Omega)$, 1 , under the corresponding hypothesis on <math>f in case in which all the coefficients of A and $\{B_j\}_{j=1}^m$ do not depend on t with the aid of their general results on abstract differential equations

$$\frac{1}{i}\frac{du}{dt} - Au = f(t) \tag{0.3}$$

in a Banach space. Recently in [4] A. Friedman obtained such kind of regularity theorems for the solutions of abstract differential equations

$$\frac{1}{i}\frac{du}{dt} - A(t)u = f(t) \tag{0.4}$$

in a Hilbert space using Fourier transform in t. In his results A(t) may depend on t but is assumed to have a constant domain. In [11] the author showed that A. Friedman's method can be applied to the problem with time-dependent boundary conditions

$$\partial u(x, t)/\partial t + A(x, t, \partial/\partial x)u(x, t) = f(x, t), \quad x \in \Omega, \quad (0.5)$$

$$B_{j}(x, t, \partial/\partial x)u(x, t) = 0, \qquad x \in \partial\Omega, \quad j = 1, \dots, m, \qquad (0.6)$$