ON R-ALGEBRAS WHICH ARE R FINITELY GENERATED

MANABU HARADA

(Received November 5, 1964)

Let K be a field and R a ring with 1. We know several conditions under which an R-algebra is a finitely generated R-module. In [6] Rosenberg and Zelinsky obtained, for a K-algebra A, those conditions in a case where $A \bigotimes_{\kappa} A^* / N(A \bigotimes_{\kappa} A^*)$ is Artinian, where A^* is an anti-isomorphic algebra of A and $N(^*)$ is the radical of *.

In §1 we shall study a similar problem in a case where $A \bigotimes_{\kappa} A^*$ is Noetherian and obtain, for an algebraic algebra A over K such that A/N(A) is a semi-simple ring with minimum condition, that $[A:K] < \infty$ if and only if $A \bigotimes_{\kappa} A^*$ is right Noetherian.

In §2 we consider a primitive K-algebra with minimal one sided ideals. We give a condition that the associated division ring is of a finite K-dimension.

Finally we consider a separable R-algebra A which is a submodule in a free R-module. If R is Noetherian, then we show that A is Rfinitely generated as R-module.

1. Algebras of finite type

In this paper we always assume that K means a field and R a commutative ring with 1.

Let $A_2 \supseteq A_1$ be *R*-algebras. Then we have a natural homomorphism $\Phi: A_1 \bigotimes_R A_1^* \to A_2 \bigotimes_R A_2^*$. We denote also the image of Φ by $A_1 \bigotimes_R A_1^*$ if there are no confusions. Furthermore, we have a natural right $A_i \bigotimes_R A_i^*$ -homomorphism $\varphi_i: A_i \bigotimes_R A_i^* \to A_i$ by setting $(a \otimes b^*) = ba$. We denote its kernel by J_i .

The following lemma is based on a suggestion of M. Auslander.

Lemma 1. Let A_3 be an R-algebra and $A_2 \supseteq A_1$ proper R-subalgebras contained in the center of A_3 . We assume that A_{i+1} is A_i -projective for i=1,2. Then $J_3 \supseteq J_2 A_3^e \supseteq J_1 A_3^e$, where $A_3^e = A_3 \bigotimes_p A_3^*$.