ON THE GROUPS WITH THE SAME TABLE OF CHARACTERS AS ALTERNATING GROUPS

Tuyosi OYAMA

(Received May 26, 1964)

1. Introduction

It was proved by H. Nagao that a finite group which has the same table of characters as a symmetric group S_n is isomorphic to S_n . The purpose of this paper is to prove the following theorem.

Theorem. If a finite group G has the same table of characters as an alternating group A_n , then G is isomorphic to A_n .

As is shown in [2], a group G as in the theorem has the same order as A_n , therefore the theorem is trivial for n=2 and 3. Furthermore, the degrees of corresponding irreducible characters of G and A_n coincide with each other, the numbers of elements of corresponding conjugate classes of G and A_n are the same, and G has the same multiplication table of conjugate classes as A_n . From the last fact it follows that G is simple for $n \ge 5$. Since it is known that a simple group of order 60 or 360 is isomorphic to A_5 or A_6 , the theorem is true for n=5 and 6.

Now we shall give here an outline of the proof of the theorem which will be given in the next section. An alternating group A_n is isomorphic to the group generated by a_1, a_2, \dots, a_{n-2} with the following defining relations;

(*)
$$\begin{cases} a_1^3 = 1, \ a_2^2 = a_3^2 = \dots = a_{n-2}^2 = 1\\ (a_i a_{i+1})^3 = 1 \qquad (i = 1, 2, \dots, n-3)\\ (a_i a_j)^2 = 1 \qquad (i = 1, 2, \dots, n-4, \ i+1 < j) \end{cases}$$

(For the proof, see [1], Note C). The proof of the theorem is carried out by showing the existence of elements a_1, \dots, a_{n-2} in G which satisfy the above relations.

Let $C^*(i_1^{\alpha_1}, i_2^{\alpha_2}, \cdots)$ be the totality of elements of A_n which can be expressed as a product of α_1 cycles of length i_1, α_2 cycles of length i_2, \cdots such as each of letters occurs in only one cycle of them, where we as-