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Introduction

In the recent study of real analytic varieties, one of the main pro-
blems is to decompose a given variety into some reasonable subsets. H.
Whitney proved that a real algebraic variety can be expressed as a
union of mutually disjoint manifolds of various dimensions [6], while A.
H. Wallace decomposed it into sheets (analytically connected sets) [4].
Later, Whitney and F. Bruhat extended Whitney's result to the case of
so-called C-analytic varieties [7], and Wallace also generalized his result
to real analytic varieties in somewhat milder form [5]. In these studies,
local connectivity of real analytic varieties (see, for example, [7], Prop.
2) plays a fundamental role.

In our present paper, we first prove that a real analytic variety E
is locally triangulable with given subvarieties as subcomplexes (Theorem
1), from which local connectivity follows immediately, and as a conse-
quence of this Theorem, we show that a real algebraic variety is globally
triangulable into a finite number of simplexes (Theorem 2). Next, in a
global vein, we show that a real analytic variety admits, what we call,
pseudo-cell docomposition (Corollary to Theorem 3).

When we carry out the proof by induction, the main difficulty lies
in the fact that a (local) projection of E on a subspace (with respect to
a coordinate system) is not necessarily a variety, even though a coordinate
system is ^-proper (see § 1) for the (local) complexification E* of E. The
most part of our proof is devoted to eliminate this difficulty. The idea
of our proof is to get a (local) triangulation of £ as a subcomplex of a
bigger complex G which has a more convenient form than E itself. To
do so, we first construct two imbedding varieties E* and έ* which locally
contain E in such a way that E* contains the real part of E* (Lemma
1). Next we introduce the notions of ^-proper simplex and ^-proper
complex (§ 4 and § 5) and show that the triangulation of ^-proper complex
can be extended to the whole neighborhood (Lemma 3). Taking the real


