LOCAL TRIANGULATION OF REAL ANALYTIC VARIETIES

Dedicated to Professor K. Shoda on his sixtieth birthbay

By

KENKICHI SATO

Introduction

In the recent study of real analytic varieties, one of the main problems is to decompose a given variety into some reasonable subsets. H. Whitney proved that a real algebraic variety can be expressed as a union of mutually disjoint manifolds of various dimensions [6], while A. H. Wallace decomposed it into sheets (analytically connected sets) [4]. Later, Whitney and F. Bruhat extended Whitney's result to the case of so-called *C*-analytic varieties [7], and Wallace also generalized his result to real analytic varieties in somewhat milder form [5]. In these studies, local connectivity of real analytic varieties (see, for example, [7], Prop. 2) plays a fundamental role.

In our present paper, we first prove that a real analytic variety E is locally triangulable with given subvarieties as subcomplexes (Theorem 1), from which local connectivity follows immediately, and as a consequence of this Theorem, we show that a real algebraic variety is globally triangulable into a finite number of simplexes (Theorem 2). Next, in a global vein, we show that a real analytic variety admits, what we call, pseudo-cell docomposition (Corollary to Theorem 3).

When we carry out the proof by induction, the main difficulty lies in the fact that a (local) projection of E on a subspace (with respect to a coordinate system) is not necessarily a variety, even though a coordinate system is p-proper (see § 1) for the (local) complexification E^* of E. The most part of our proof is devoted to eliminate this difficulty. The idea of our proof is to get a (local) triangulation of E as a subcomplex of a bigger complex \tilde{G} which has a more convenient form than E itself. To do so, we first construct two imbedding varieties \tilde{E}^* and \hat{E}^* which locally contain E in such a way that \hat{E}^* contains the real part of \tilde{E}^* (Lemma 1). Next we introduce the notions of p-proper simplex and p-proper complex (§ 4 and § 5) and show that the triangulation of p-proper complex can be extended to the whole neighborhood (Lemma 3). Taking the real