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ON THE UNIQUENESS OF THE SOLUTION OF THE
CAUCHY PROBLEM AND THE UNIQUE CONTINUATION
THEOREM FOR ELLIPTIC EQUATION

By

Hrrosu1 KUMANO-GO

§0. Introduction. We shall consider differential operators with complex
valued coefficients in a neighborhood of the origin in the (v+1)-dimen-
sional Euclidean space whose points are denoted by (¢, x)=(¢, x,, -, x,)
or (v, 0)=(r, 6, ---,8,) or simply (x)=(x,, -+, Xy4,).

The object of this note is to prove the following two theorems by
a unified method.

The one is the theorem on the uniqueness of the solution of the
Cauchy problem for the differential equation of the form
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E=(,, -, &), &=&n ... &) can be written as

We assume that
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for £ in some neighborhood of any & on the unit sphere S={&; |&| =1}
(1€ :(ﬁ %" and for (¢, x) in some neighborhood of the origin where
i=1

AP =g +ip® (=1, -,k and AP=—¢P+p® (J=1,---,m—k) are
distinct respectively and infinitely differentiable with respect to (¢, x, &)
(A$P and A$® may coincide at some point for some ¢ and j). Furthermore
we assume that A{(Z x, &) =A0(, 1, E1E|17) &l (=1, --- , k) satisfy the
condition of M. Matsumura [8], that is



