ON THE UNIQUENESS OF THE SOLUTION OF THE CAUCHY PROBLEM AND THE UNIQUE CONTINUATION THEOREM FOR ELLIPTIC EQUATION

By

Нітозні KUMANO-GO

§ 0. Introduction. We shall consider differential operators with complex valued coefficients in a neighborhood of the origin in the $(\nu+1)$ -dimensional Euclidean space whose points are denoted by $(t, x) = (t, x_1, \dots, x_{\nu})$ or $(r, \theta) = (r, \theta_1, \dots, \theta_{\nu})$ or simply $(x) = (x_1, \dots, x_{\nu+1})$.

The object of this note is to prove the following two theorems by a unified method.

The one is the theorem on the uniqueness of the solution of the Cauchy problem for the differential equation of the form

(0.1)
$$Lu \equiv \sum_{i+|\mu| \leq m} a_{i,\mu}(t, x) \frac{\partial^{i+|\mu|}}{\partial t^i \partial x^{\mu}} u(t, x) = f(t, x)$$

 $(\mu = (\mu_1, \dots, \mu_{\nu}), \ |\mu| = \mu_1 + \dots + \mu_{\nu}; \ x = (x_1, \dots, x_{\nu}), \ \partial x^{\mu} = \partial x_1^{\mu_1} \dots \partial x_{\nu}^{\mu_{\nu}})$ under the following conditions: Set $L_m \equiv \sum_{i+|\mu|=m} a_{i,\mu}(t,x) \frac{\partial^m}{\partial t^i \partial x^{\mu}}$. We assume that the associated characteristic polynomial $L_m(t,x,\lambda,\xi) = \sum_{i+|\mu|=m} a_{i,\mu}(t,x) \lambda^i \xi^{\mu}$ $(\xi = (\xi_1, \dots, \xi_{\nu}), \ \xi^{\mu} = \xi_1^{\mu_1} \dots \xi_{\nu}^{\mu_{\nu}})$ can be written as

(0.2)
$$L_{m}(t, x, \lambda, \xi') = \prod_{i=1}^{k} (\lambda - \lambda_{i}^{(1)}(t, x, \xi')) \prod_{j=1}^{m-k} (\lambda - \lambda_{j}^{(2)}(t, x, \xi'))$$

$$(0 \le k \le m)$$

for ξ' in some neighborhood of any ξ'_0 on the unit sphere $S = \{\xi' \; ; \; |\xi'| = 1\}$ $(|\xi'| = (\sum_{i=1}^{\nu} \xi_i'^2)^{1/2})$ and for (t,x) in some neighborhood of the origin where $\lambda_i^{(1)} = -q_i^{(1)} + ip_i^{(1)} \quad (i=1,\cdots,k)$ and $\lambda_j^{(2)} = -q_j^{(2)} + ip_j^{(2)} \quad (j=1,\cdots,m-k)$ are distinct respectively and infinitely differentiable with respect to (t,x,ξ') $(\lambda_i^{(1)} \text{ and } \lambda_j^{(2)} \text{ may coincide at some point for some } i \text{ and } j)$. Furthermore we assume that $\lambda_i^{(1)}(t,x,\xi) = \lambda_i^{(1)}(t,x,\xi|\xi|^{-1}) |\xi| \quad (i=1,\cdots,k)$ satisfy the condition of M. Matsumura [8], that is