Ohnishi, Masao Osaka Math. J. 13 (1961), 139–142.

Von Wright-Anderson's Decision Procedures for Lewis's Systems S2 and S3

By Masao Ohnishi

In [1] A. R. Anderson described decision procedures for Lewis's system S4 and for von Wright's system M. In this note similar procedures for Lewis's systems S2 and $S3^{1/2}$ will be developed.

By virtue of the application of the results of my previous paper [4] not only the proof which shows the adequacy of our decision procedures will be considerably simplified comparing with [1], but also intrinsic interrelations between Gentzen's and von Wright-Anderson's methods will be made clear.

Familiarity with [1] and [4] will be presupposed.

§1. Preliminaries.

1.1. DEFINITION of *constituent* of a (modal) formula α is as follows:

(1) A propositional variable contained in α is a constituent of α .

(2) A subformula (of α) of the form $\Box \beta$ is a constituent of α .

1.2. Construction of a truth-table for α , denoted by $\mathfrak{T}(\alpha)$, the notion of *T*-rows and of *F*-rows of it, and the value of a subformula of α in Row (i) etc. are just the same as in [1].

§2. A decision procedure for S2.

2.1. DEFINITION. The number of the logical symbols \Box contained in a formula α is called the *order* of α .

2.2. DEFINITION. α is an *E2-tautology* if and only if every *F*-row of $\mathfrak{T}(\alpha)$, denoted by *Row* (*i*), satisfies at least one of the following two conditions:

I. Some constituent of the form $\Box \beta$ has the value T in Row (i), where β has the (assigned or calculated) value F in Row (i).

II. Some constituents of the form $\Box \gamma_1$, $\Box \gamma_2$, \cdots , $\Box \gamma_n$ $(n \ge 1)$, all have

¹⁾ Lewis and Langford [3].

²⁾ Anderson reported in [1] (without detail) that he also solved the decision problem of S3 in a similar way as [2]. But checking his unpublished solution the author is of opinion that it is incorrect.