Note on Axiomatic Set Theory I. The Independence of Zermelo's "Aussonderungsaxiom" from Other Axioms of Set Theory

By Toshio NISHIMURA

In this paper axioms of set theory mean Gödel's axioms of set theory in [2], which are modified so that the axiom C2 postulates directly the existence of all elements of a given set and C3 the existence of power set.

In what follows we prove that Zermelo's "Aussonderungsaxiom" is independent of other axioms of set theory. A fortiori, the independence of Gödel's axiom C 4 (Fraenkel's "axiom of substitution"), is proved since the axiom of substitution implies the "Aussonderungsaxiom".

The proof is carried out by constructing an inner model Λ for the axioms A, B, C1, C2, C3, D and E under the axioms A, B, C1, C2 and C4, which does not satisfy the "Aussonderungsaxiom". The idea appears already in [1]. However the proof in [1] is not formal.

In §1, we give the axioms of set theory.

In §2, we construct an inner model Λ under the axioms A, B, C1, C2 and C4. Here we notice that the axioms do not imply the existence of power set of any set.

In § 3, we prove some preliminary results with respect to the model Λ .

In § 4, we prove that the model Λ satisfies the axioms A, B, C 1, 2, 3, D and E.

In $\S 5$, we prove that the model Λ does not satisfy the "Aussonderungsaxiom".

§ 1. The axiom system of set theory

In what follows we apply Gödel's notations in [2] in most cases. For logical notations we use following symbols, \vee (or), \cdot (and), \sim (not), \supset (implies), \equiv (equivalence), = (identity), ($\exists X$) (there is an X), (X) (for all X) and ($\exists ! X$) (there is exactly one X). The system has three primitive notions: class, denoted by \mathfrak{CIs} ; set, denoted by \mathfrak{M} ; and the diadic relation \in between class and class, class and set, set and class, or