Decompositions of a Completely Simple Semigroup

By Takayuki TAMURA

§1. Introduction.

In this paper we shall study the method of finding all the decompositions of a completely simple semigroup and shall apply the result to the two special cases: an indecomposable completely simple semigroup [2] and a \mathfrak{G} -semigroup [4]. By a decomposition of a semigroup S we mean a classification of the elements of S due to a congruence relation in S. Let S be a completely simple semigroup throughout this paper. According to Rees [1], it is faithfully represented as a regular matrix semigroup whose ground group is G and whose defining matrix semigroup is $P = (p_{\mu\lambda}), \ \mu \in L, \ \lambda \in M$, that is, either $S = \{(x; \ \lambda \mu) | x \in G, \ \mu \in L, \ \lambda \in M\}$ or S with a two-sided zero 0, where the multiplication is defined as

$$(x; \lambda \mu)(y; \xi \eta) = \begin{cases} (x p_{\mu \xi} y; \lambda \eta) & \text{if } p_{\mu \xi} \neq 0 \\ 0 & \text{if } p_{\mu \xi} = 0 \text{ and hence } S \text{ has } 0. \end{cases}$$

For the sake of simplicity S is denoted as

Simp.
$$(G, 0; P)$$
 or Simp. $(G; P)$

according as S has 0 or not. L and M may be considered as a rightsingular semigroup and a left-singular semigroup respectively [5].

§2. Normal Form of Defining Matrix.

We define two equivalence relations $\stackrel{\circ}{\underline{M}}$ and $\stackrel{\circ}{\underline{L}}$ in M and L respectively: we mean by $\lambda \stackrel{\circ}{\underline{M}} \sigma$ that $p_{\eta\lambda} \pm 0$ if and only if $p_{\eta\sigma} \pm 0$ for all $\eta \in L$; by $\mu \stackrel{\circ}{\underline{L}} \tau$ that $p_{\mu\xi} \pm 0$ if and only if $p_{\tau\xi} \pm 0$ for all $\xi \in M$. Let $L = \sum_{\mathfrak{l}} L_{\mathfrak{l}}$, and $M = \sum_{\mathfrak{m}} M_{\mathfrak{m}}$ be the classifications of the elements of L and M due to the relations $\stackrel{\circ}{\underline{L}}$ and $\stackrel{\circ}{\underline{M}}$ respectively.

Lemma 1. A defining matrix is equivalent to one which satisfies the following two conditions. Let e be a unit of G.

- (1) For any m, there is $\alpha(m) \in L$ such that $p_{\alpha(m),\xi} = e$ for all $\xi \in M_m$.
- (2) For any \mathfrak{l} , there is $\beta(\mathfrak{l}) \in M$ such that $p_{\eta,\beta(\mathfrak{l})} = e$ for all $\eta \in L_{\mathfrak{l}}$.