On the Conditions of a Stein Variety

By Takeo Asami

§1. Introduction. The purpose of this paper is to give a criterion for a Stein variety. An analytic space \mathfrak{F} [1] with a countable base is called a Stein variety, when :

1. \mathfrak{F} is holomorph-convex; that is, a holomorphic convex hull of any compact subset of \mathfrak{B} is compact. The holomorphic convex hull of a subset K is the set of the points P satisfying $|f(P)| \leqq \operatorname{Max}|f(K)|$ for all functions holomorphic in \mathfrak{B}.
2. For any two points $P, Q \in \mathfrak{B}(P \neq Q)$, there exists a function f holomorphic in \mathfrak{G}, such that $f(P) \neq g(Q)$.
3. For any point $P \in \mathfrak{Y}$, there exists a finite number of functions holomorphic in \mathfrak{B} which imbed a neighborhood U of P in the following way, i.e., by means of which U is represented as an analytic set ${ }^{1)} S$ in an open set of the space of complex variables of sufficiently high dimensions such that S has the property that, for arbitrary point P^{\prime} of S, any function holomorphic in a neighborhood of P^{\prime} is expressed as a trace of a function of the space ${ }^{2)}$.

The definition in this form is due to H . Grauert [2].
The problem of simplifying these conditions is treated by H. Grauert [2] and R. Remmert [7]. Grauert proved that a holomorphic convex analytic space (without the assumption of having a countable base) is a Stein variety, if it is K-complete. An analytic space \mathfrak{R} is called K-complete, if, for any point $P \in \Re$, there exist a finite number of functions holomorphic in \Re which map a neighborhood of P non degeneratedly at P, i.e., the image of P in the space of complex variables has as an inverse image in U a discrete set. Since, as Remmert remarked, K completeness follows immediately from the separability condition, so, according to Grauert's result, one of the conditions (2., 3.) implies that a holomorph-convex analytic space is a Stein variety. But a holomorph-

[^0]
[^0]: 1) Namely the set which is locally the common zeros of a finite number of equations.
 2) In this paper, we shall call for convenience the conditions 2 . and 3 . the separability condition and the coordinate condition respectively.
