Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, II¹⁾

By Zenjiro KURAMOCHI

The present article is concerned with the equilibrium potential on Riemann surfaces with positive boundary.

1. Let R^* be a Riemann surface with positive boundary and let $\{R_n\}$ $(n=0, 1, 2, \cdots)$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$. Put $R=R^*-R_0$. Let $N_n(z, p)$ be a positive function in R_n-R_0 harmonic in R_n-R_0 except one point $p \in R$ such that $N_n(z, p) = 0$ on ∂R_0 , $\frac{\partial N_n(z, p)}{\partial n} = 0$ on ∂R_n and $N_n(z, p) + \log |z-p|$ is harmonic in a neighbourhood of p. Then the *-Dirichlet integral of $N_n(z, p)$ taken over R_n-R_0 is $D^*(N_n(z, p)) = U_n(p)$, where $U_n(p) = \lim_{z \to p} (N_n(z, p) + \log |z-p|)$ and the *-Dirichlet integral is taken with respect to $N_n(z, p) + \log |z-p|$ in the neighbourhood of p. For $N_n(z, p)$ and $N_{n+i}(z, p)$, we have

$$\begin{split} D^*_{R_n-R_0}(N_n(z, p), \ N_{n+i}(z, p)) &= D^*_{R_{n+i}-R_0}(N_{n+i}(z, p)) = 2\pi U_{n+i}(p)^{2_i}, \\ D_{R_n-R_0}(N_n(z, p) - N_{n+i}(z, p)) &= D^*_{R_n-R_0}(N_n(z, p)) - 2D^*_{R_n-R_0}(N_n(z, p), \ N_{n+i}(z, p)) \\ &+ D^*_{R_n-R_0}(N_{n+i}(z, p)) < D^*_{R_n-R_0}(N_n(z, p)) - D^*_{R_{n+i}-R_0}(N_{n+i}(z, p)) \\ &= 2\pi (U_n(p) - U_{n+i}(p)) . \end{split}$$

Hence $\{U_n(p)\}$ is decreasing with respect to *n*. Since $\int_{\partial R_0} \frac{\partial N_n(z, p)}{\partial n} ds = 2\pi$ for every *n*, $\lim_{n \to \infty} U_n(p) > -\infty$, whence $\{U_n(p)\}$ converges. Therefore $D_{R_{n+i}-R_0}(N_{n+i}(z, p) - N_n(z, p))$ tends to zero if *n* and *i* tend to ∞ , which implies that $\{N_n(z, p)\}$ converges in mean. Further $N_n(z, p) = 0$ on ∂R_0 yields that $\{N_n(z, p)\}$ converges uniformly to a function N(z, p), which clearly has the minimal *-Dirichlet integral over *R*, in every compact part of *R*. Clearly by the compactness of ∂R_0 , we have $\int_{\partial R_0} \frac{\partial N(z, p)}{\partial n} ds =$

¹⁾ Resumé of this article appeared in Proc. Japan Acad. 32, 1956.

²⁾ Let $v_r(p)$ be a circular neighbourhood of p with respect to the local parameter: $v_r(p) = E[z \in R : |z-p| < r]$. Then $D^*(N_n(z, p), N_{n+i}(z, p)) = \int_{\partial^{U}(p)} (N_{n+i}(z, p) + \log |z-p|) \frac{\partial N_n(z, p)}{\partial n} ds$. By letting $r \to 0$, we have $D^*(N_{n+i}(z, p), N_n(z, p)) = 2\pi U_{n+i}(p)$. Clearly *-Dirichlet integral reduces to Dirichlet integral when the functions have no pole.