Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, **J/^υ**

By Zenjiro KURAMOCHI

The present article is concerned with the equilibrium potential on Riemann surfaces with positive boundary.

1. Let *R** be a Riemann surface with positive boundary and let *{Rⁿ }* $(n=0,\,1,\,2,\,\cdots)$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$ Put $R=R^*-R_0$. Let $N_n(z, p)$ be a positive function in R_n-R_0 harmonic in $R_n - R_0$ except one point $p \in R$ such that $N_n(z, p) = 0$ on ∂R_0 , $\frac{d}{dx} \frac{dy}{dx} = 0$ on ∂R_n and $N_n(z, p) + \log |z - p|$ is harmonic in a neightbourhood of p . Then the *-Dirichlet integral of $N_n(z, p)$ taken over $R_n - R_0$ is $D^*(N_n(z, p)) = U_n(p)$, where $U_n(p) = \lim_{z \to p} (N_n(z, p) + \log|z - p|)$ and the $*-$ Dirichlet integral is taken with respect to $N_n(z, p) + \log|z-p|$ in the neighbourhood of p . For $N_n(z, p)$ and $N_{n+i}(z, p)$, we have

$$
D_{R_{n}-R_{0}}^{*}(N_{n}(z, p), N_{n+i}(z, p)) = D_{R_{n+i}-R_{0}}^{*}(N_{n+i}(z, p)) = 2\pi U_{n+i}(p)^{2},
$$

\n
$$
D_{R_{n}-R_{0}}(N_{n}(z, p)-N_{n+i}(z, p)) = D_{R_{n}-R_{0}}^{*}(N_{n}(z, p))-2D_{R_{n}-R_{0}}^{*}(N_{n}(z, p), N_{n+i}(z, p))
$$

\n
$$
+D_{R_{n}-R_{0}}^{*}(N_{n+i}(z, p)) < D_{R_{n}-R_{0}}^{*}(N_{n}(z, p))-D_{R_{n+i}-R_{0}}^{*}(N_{n+i}(z, p))
$$

\n
$$
= 2\pi(U_{n}(p)-U_{n+i}(p)).
$$

Hence $\{U_n(p)\}$ is decreasing with respect to *n*. Since $\int \frac{\partial N_n(z, p)}{\partial x} ds = 2\pi i$ for every *n*, $\lim_{n \to \infty} U_n(p)$ $>$ $-\infty$, whence $\{U_n(p)\}$ converges. Therefore $D_{R_{n+i}-R_0}(N_{n+i}(z, p)-N_n(z, p))$ tends to zero if *n* and *i* tend to ∞ , which implies that $\{N_n(z, p)\}$ converges in mean. Further $N_n(z, p) = 0$ on ∂R_0 yields that $\{N_n(z, p)\}$ converges uniformly to a function $N(z, p)$, which clearly has the minimal $*$ -Dirichlet integral over R , in every compact part of R. Clearly by the compactness of ∂R_0 , we have $\int_{\partial R_0} \frac{\partial N(z, p)}{\partial n} ds =$

¹⁾ Resume of this article appeared in Proc. Japan Acad. **32,** 1956.

²⁾ Let $v_r(p)$ be a circular neighbourhood of p with respect to the local parameter : $v_r(p) =$ $E[z \in R : |z-p| \le r].$ Then $D^*(N_n(z, p), N_{n+i}(z, p)) = \int_{N(\Delta)} (N_{n+i}(z, p) + \log |z-p|) \frac{\partial N_n(z, p)}{\partial n} dz.$ By letting $r \to 0$, we have $D^*(N_{n+i}(z, p), N_n(z, p)) = 2\pi U_{n+i}(p)$. Clearly *-Dirichlet integral reduces to Dirichlet integral when the functions have no pole.