Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces. I¹⁾

By Zenjiro KURAMOCHI

We shall extend some theorems of potential theory in space to abstract Riemann surfaces. In the present article we shall be concerned with Evans-Selberg's theorem on Riemann surfaces with null-boundary.

G. C. Evans and H. Selberg² proved the following theorem. Given a closed set F of capacity zero in space, then there exists a positive mass distribution on F whose potential is positively infinite at every point of F. We shall extend this theorem to abstract Riemann surfaces with nullboundary.

Let R^* be a Riemann surface with null-boundary and $\{R_n\}$ $(n=0, 1, 2, \cdots)$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$. Put $R = R^* - R_0$. Let $G_n(z, p)$ be the Green's function of $R_n - R_0$ with pole at p. Clearly, $G_n(z, p) \uparrow G(z, p)$ as $n \to \infty$. Since $\int_{\partial R_0} \frac{\partial G_n(z, p)}{\partial n} ds \leq 2\pi$ for every n, G(z, p) is not constant infinity and harmonic in R except at pwhere G(z, p) has a logarithmic singularity.

Take *M* large so that the set $V_M(p) = E[z \in R : G(z, p) \ge M]$ is compact in *R*. Let $\omega_n(z)$ be a harmonic function in $R_n - R_0 - V_M(p)$ such that $\omega_n(z) = 0$ on $\partial R_0 + \partial V_M(p)$ and $\omega_n(z) = M$ on ∂R_n . Then since R^* is a Riemann surface with null-boundary, $\lim_{n \to \infty} \omega_n(z) = 0$. Let $\overline{G}_n(z, p)$, $G'_n(z, p)$ and $\underline{G}_n(z, p)$ be harmonic functions in $R_n - R_0 - V_M(p)$ such that $\overline{G}_n(z, p) = G_n(z, p) = M$ on $\partial V_M(p)$, $\overline{G}_n(z, p) = G'_n(z, p) = G_n(z, p) = 0$ on ∂R_0 and $\overline{G}_n(z, p) = M$, $\frac{\partial G'_n(z, p)}{\partial n} = 0$ and $\underline{G}_n(z, p) = 0$ on ∂R_n respectively. Since $0 < G'_n(z, p) < M$ on ∂R_n , we have by the maximum principle

$$\underline{G}_n(z, p) \leq \underline{G}_n'(z, p) \leq \overline{G}_n(z, p), \quad \underline{G}_n(z, p) \leq \underline{G}(z, p) \leq \overline{G}_n(z, p)$$
$$0 \leq \overline{G}_n(z, p) - \underline{G}_n(z, p) = M\omega_n(z).$$

and

²⁾ G. C. Evans: Potential and positively infinite singularities of harmonic functions. Monatsch. f. Math. u. Phys. 43, 1936, 419-424.

H. Selberg: Über die ebenen Punktmengen von der Kapazität Null. Avh. Norske Vid-akad, Oslo, 1, Nr. 10, 1937, 1–10.