On Algebras of Bounded Representation Type¹⁾

By Tensho Yoshii

Let A be an associative algebra with a unit element over a field K and let $A = \sum_{\kappa=1}^{n} \sum_{i=1}^{r(\kappa)} Ae_{\kappa i}$ be a direct decomposition of A into directly indecomposable left ideals where $Ae_{\kappa i} \simeq Ae_{\kappa 1} = Ae_{\kappa}$. It is well known that if A is generalised uniserial a directly indecomposable left module is homomorphic to one of $Ae_{\kappa}(\kappa=1, \dots, n)^{2}$. But in general a directly indecomposable left module of A is not necessarily homomorphic to Ae_{κ} and there may exist directly indecomposable left modules of arbitrary high degrees³. In his paper [2] T. Nakayama propounded the problem to determine the general type of rings which possess arbitrary large directly indecomposable left (or right) modules and in [3] D. G. Higmann proved that every group has not indecomposable modular representations of arbitrary high degrees of characteristic p if and only if it has cyclic p-sylow subgroups.

Now in this paper we shall study necessary and sufficient conditions for an algebra to be of bounded representation type in a special case where $N^2 = 0$ (N is the radical of A)⁴⁾ and K is algebraically closed.

First the chain $\{Ne_1, \dots, Ne_s\}$ means that $Ne_{i+1} \neq Ne_i$ and Ne_{i+1} and Ne_i contain simple left ideals isomorphic to each other, namely $Ne_{i+1} \supset Au_{i+1}^{(\kappa)}$, $Ne_i \supset Au_{i+1}^{(\kappa)}$ and $Au_{i+1}^{(\kappa)} \simeq Au_i^{(\kappa)}$. If Ne_1 , Ne_2 and Ne_3 contain simple left ideals isomorphic to each other, namely $Ne_1 \supset Au_1^{(\lambda)}$, $Ne_2 \supset Au_2^{(\lambda)}$, $Ne_3 \supset Au_3^{(\lambda)}$ and $Au_1^{(\lambda)} \simeq Au_2^{(\lambda)} \simeq Au_3^{(\lambda)}$, we define Ne_1 to be divided into Ne_2 and Ne_3 . Then we shall prove that if $N^2 = 0$ and K is algebraically closed A has not directly indecomposable left (or right) modules of arbitrary high degrees if and only if the following conditions are satisfied;

(1) $Ne_{\lambda}(e_{\lambda}N)$ ($\lambda = 1, \dots, n$) do not contain at least two simple

¹⁾ This means that the degree of the directly indecomposable representation is bounded. Cf. James P. Jans [4].

²⁾ T. Nakayama $\lceil 1 \rceil$.

³⁾ H. Brummund [6].

⁴⁾ If $N^2 \neq 0$, it is very difficult and our conditions are extended as necessary conditions to the case where $N^2 \neq 0$. But it is not proved yet that these conditions are sufficient for an algebra to be of bounded representation type. Cf. James P. Jans [4].