Indecomposable Completely Simple Semigroups
 Except Groups

By Takayuki Tamura

§ 1. If a semigroup S is homomorphic onto a semigroup T, a factor semigroup of S is obtained, namely, S is decomposed into a union of subsets by gathering elements of S mapped into the same element of T. Among all homomorphisms of S, there are two kinds of special cases: isomorphisms and a mapping of all elements of S to the oneelement semigroup, which are called trivial homomorphisms. By an indecomposable semigroup we mean a semigroup without non-trivial homomorphism. As is well known a group is indecomposable if and only if it is simple. Of course finite semigroups of order at most 2 are indecomposable, and we shall call them as trivial cases. It is clear that an indecomposable semigroup has no proper ideal ${ }^{11}$. Otherwise we could consider Rees' difference semigroup of it modulo the proper ideal so that it would have a non-trivial homomorphism. In this paper we shall investigate a structure of indecomposable completely simple semigroups except groups [1].

According to Rees [1], a completely simple semigroup is represented as a regular matrix semigroup. In this paper, we shall use without special explanation the same terminology and notations as Rees'. Let G^{\prime} denote a group G with zero 0 adjoined. Let P be an $(M, L)-$ matrix, $\left(p_{\mu \lambda}\right), \mu \in M, \lambda \in L$, elements of which belong to G^{\prime}, satisfying the conditions that for any suffix $\mu \in M$ at least one $p_{\mu \lambda} \neq 0$, and that for any suffix $\lambda \in L$ at least one $p_{\mu \lambda} \neq 0$. Then a regular matrix semigroup S with a defining matrix P is defined to be a semigroup whose non-zero elements are all (L, M)-matrices $(x)_{\alpha \beta}{ }^{2)} x$ varying over G, α over L, β over M, and the multiplication in S is defined as

$$
(x)_{\alpha \beta}(y)_{\gamma \delta}=\left(x p_{\beta \gamma} y\right)_{\alpha \delta} .
$$

In some cases S may contain a zero-matrix 0 , elements of which are all

[^0]
[^0]: 1) By a proper ideal of S we mean a two-sided ideal distinct from S itself and from a set of only zero.
 2) Denote by $(x)_{\alpha \beta}$ a matrix $X=\left(z_{\lambda \mu}\right)$ where $z_{\lambda \mu}=x$ if $(\lambda, \mu)=(\alpha, \beta)$, and $z_{\lambda \mu}=0$ if $(\lambda, \mu) \neq(\alpha, \beta)$.
