On Homeomorphisms which are Regular Except for a Finite Number of Points

By Tatsuo Homma and Shin'ichi KINOSHITA

Introduction

All spaces considered in this paper are separable metric. Let h be a homeomorphism of a set X onto itself. Then $p \in X$ is called *regular*¹⁾ under h, if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \varepsilon$ for every integer n. If $p \in X$ is not regular under h, then p is called *irregular*.

A set X will be called a C^* -set if X-A is connected for any A which consists of a finite number of points of X. For example any *n*-manifold $(n \ge 2)$ is a C^* -set. Then one of the purpose of this paper is to prove the following

Theorem I. Let X be a compact C^* -set and h a homeomorphism of X onto itself. If h is regular at every $x \in X$ except for a finite number of points, then the number of points which are irregular under h is at most two.

We shall also prove the following

Theorem II.²⁾ Let X be a compact C^* -set and h a homeomorphism of X onto itself such that

(i) h is irregular at a, b $(\pm) \in X$,

(ii) h is regular at every $x \in X - (a \cup b)$.

Then either (1) for each $x \in X-b$ $h^n(x)$ converges to a when $n \to \infty$ and for each $x \in X-a$ $h^n(x)$ converges to b when $n \to -\infty$, or (2) for each $x \in X-a$ $h^n(x)$ converges to b when $n \to \infty$ and for each $x \in X-b$ $h^n(x)$ converges to a when $n \to -\infty$.

§ 1.

Let X be a set and h a homeomorphism of X onto itself. Let R(h) be the set of all points which are regular under h and I(h) the set of all points which are irregular under h. Then

¹⁾ Introduced by B. v. Kerékjártó [5].

²⁾ This is a converse theorem of Theorem 1 of the authors [3].