Osaka Mathematical Journal Vol. 6, No. 1, June, 1954

On a Topological Characterization of the Dilatation in E³

By Tatsuo Homma and Shin'ichi KINOSHITA

Introduction

A topological characterization of the dilatation in E^2 has been given by B. v. Kerékjártó [5]¹⁾ and recently in another form by us [2]. The purpose of this paper is to give a topological characterization of the dilatation in E^3 . In fact we shall prove the following

Theorem. Let h be a homeomorphism of E^3 onto itself satisfying the following conditions:

(i) for each $x \in E^3$ the sequence $h^n(x)$ converges to the origin o when $n \to \infty$ and

(ii) for each $x \in E^3$ except for o the sequence $h^n(x)$ converges to the point at infinity when $n \to -\infty$.

Then if h is sense preserving, h is topologically equivalent to the transformation

$$x' = \frac{1}{2}x, y' = \frac{1}{2}y, z' = \frac{1}{2}z$$

and if h is sense reversing, h is topologically equivalent to the transformation

$$x' = \frac{1}{2}x, y' = \frac{1}{2}y, z' = -\frac{1}{2}z$$

in Cartesian coordinates.

§1.

1. NOTATIONS. Throughout this paper h is a given homeomorphism of the 3-dimensional Euclidean space E^3 onto itself given by the assumption of our Theorem.

Following notations will be used:

¹⁾ The numbers in the brackets refer to the references at the end of this paper.