# On a Topological Characterization of the Dilatation in $E^{3}$ 

By Tatsuo Homma and Shin'ichi Kinoshita

## Introduction

A topological characterization of the dilatation in $E^{2}$ has been given by B. v. Kerékjártó [5] ${ }^{1 \text { 1 }}$ and recently in another form by us [2]. The purpose of this paper is to give a topological characterization of the dilatation in $E^{3}$. In fact we shall prove the following

Theorem. Let $h$ be a homeomorphism of $E^{3}$ onto itself satisfying the following conditions:
(i) for each $x \in E^{3}$ the sequence $h^{n}(x)$ converges to the origin 0 when $n \rightarrow \infty$ and
(ii) for each $x \in E^{3}$ except for o the sequence $h^{n}(x)$ converges to the point at infinity when $n \rightarrow-\infty$.

Then if $h$ is sense preserving, $h$ is topologically equivalent to the transformation

$$
x^{\prime}=\frac{1}{2} x, y^{\prime}=\frac{1}{2} y, z^{\prime}=\frac{1}{2} z
$$

and if $h$ is sense reversing, $h$ is topologically equivalent to the transformation

$$
x^{\prime}=\frac{1}{2} x, y^{\prime}=\frac{1}{2} y, z^{\prime}=-\frac{1}{2} z
$$

in Cartesian coordinates.

## § 1.

1. Notations. Throughout this paper $h$ is a given homeomorphism of the 3 -dimensional Euclidean space $E^{3}$ onto itself given by the assumption of our Theorem.

Following notations will be used:

[^0]
[^0]:    1) The numbers in the brackets refer to the references at the end of this paper.
