Osaka Mathematical Journal Vol. 6, No. 1, June, 1954

On Monomial Representations of Finite Groups

By Noboru Itô*

In 1933 Shoda obtained remarkable results concerning monomial representations of finite groups [1]. Above all, he established a comprehensible criterion whether a transitive monomial representation of a finite group is irreducible or not, which is of general character; so that it is applicable to imprimitive representations of not necessarily finite groups. Further he proved the precise relation between the degree of a faithful irreducible representation of a metabelian group and the order of a maximal abelian normal subgroup containing the commutator subgroup. Giving alternative proofs to the above results of Shoda with some remarks, we shall show now the following

Theorem. Every irreducible monomial representation of a finite group which is induced by its cyclic subgroup (which is different from the whole group) contains at least one not scalar diagonal matrix.

§1.

First of all, for the completeness of the description, we give a proof to a theorem due to Frobenius [2]:

Proposition 1 (FROBENIUS). Let G be an irreducible matrix group of finite order and let N be a normal subgroup of G. Let $N = r_1 \Delta_1 + \cdots + r_n \Delta_n$ be the irreducible decomposition of N. Then $r_1 = \cdots = r_n$ and $\Delta_1, \cdots, \Delta_n$ are G-conjugate with each other.

 P_{ROOF} . We may assume, by the complete reducibility, that G is transformed into the form in which N is completely reduced:

 $N = \begin{pmatrix} \Delta^{(1)} \\ \ddots \\ \Delta^{(n)} \end{pmatrix}, \text{ where } \Delta^{(1)} = r_1 \Delta_1, \cdots, \Delta^{(n)} = r_n \Delta_n. \text{ Let } X = \begin{pmatrix} X_{11} \cdots X_{1n} \\ \vdots & \vdots \\ X_{n1} \cdots X_{nn} \end{pmatrix}$ be any matrix of *G*, where X_{ij} is of type $(\deg \Delta^{(i)}, \deg \Delta^{(j)})$ $(i, j = 1, \dots, n)$. Then we have

$$\begin{pmatrix} X_{11} \cdots X_{1n} \\ \vdots & \vdots \\ X_{n1} \cdots X_{nn} \end{pmatrix} \begin{pmatrix} \Delta^{(1)}(Y) \\ \ddots \\ \Delta^{(n)}(Y) \end{pmatrix} = \begin{pmatrix} \Delta^{(1)}(XYX^{-1}) \\ \ddots \\ \Delta^{(1)}(XYX^{-1}) \end{pmatrix} \begin{pmatrix} X_{11} \cdots X_{1n} \\ \vdots \\ X_{n1} \cdots X_{nn} \end{pmatrix}$$

* Yukawa Fellow.