Unbiasedness in the Test of Goodness of Fit

By Masashi OKAMOTO

1. Introduction. Let X_1, \ldots, X_N be a random sample from the population with the d.f. F(x). We are asked to test the hypothesis H_0 that F(x) is identical with a specified continuous $d.f. F_0(x)$ against all alternatives. For this purpose we shall use the multinomial distribution, dividing the real line into n intervals $(a_{i-1}, a_i]$, $i = 1, \ldots, n$, where $a_0 = -\infty$ and $a_n = +\infty$, so that $F_0(a_i) - F_0(a_{i-1}) = 1/n$, $i = 1, \ldots, n$. If a_i are not determined uniquely, we may take any values satisfying the conditions. Put $p_i = F(a_i) - F(a_{i-1})$ and denote by N_i the number of X's that fall into the interval $(a_{i-1}, a_i]$. Then, of course, $\sum_{i=1}^n p_i = 1$ and $\sum_{i=1}^n N_i = N$. Denote, further, by W the space consisting of n-dimensional lattice points (k_1, \ldots, k_n) , where k_i is regarded as the observed value of the random variable N_i (therefore, $\sum_{i=1}^n k_i = N$).

The test is equivalent with determining the set (acceptance region) in the space W. The set S in W will be called symmetric provided that, if S contains the point (k_1, \ldots, k_n) , then S contains also all its permutations (k_1', \ldots, k_n') . We shall say, finally, that S satisfies condition O when, if S contains (k_1, \ldots, k_n) such as $k_j \ge k_i + 2$, then S contains also $(k_1, \ldots, k_i + 1, \ldots, k_j - 1, \ldots, k_n)$. It is easily

verified that if S is symmetric the convexity implies the condition O. The converse, however, is not necessarily true. For example, we shall consider, in the case N = 12, n = 3, the set S consisting of nine points shown in Fig. 1 and their permutations. S is symmetric and satisfies the condition O, but is not convex, since the middle point (7, 4, 1) of the points (8, 2, 2), (6, 6, 0) does not belong to S.

2. Theorem of unbiasedness.

Theorem. If the acceptance region R of the test is symmetric and satisfies the condition O, the test of H_0 is unbiased against any alternative.

Proof. Putting