Unbiasedness in the Test of Goodness of Fit

By Masashi Okamoto

1. Introduction. Let X_{1}, \ldots, X_{N} be a random sample from the population with the d.f. $F(x)$. We are asked to test the hypothesis H_{0} that $F(x)$ is identical with a specified continuous d.f. $F_{0}(x)$ against all alternatives. For this purpose we shall use the multinomial distribution, dividing the real line into n intervals ($\left.a_{i-1}, a_{i}\right], i=1, \ldots, n$, where $a_{0}=-\infty$ and $a_{n}=+\infty$, so that $F_{0}\left(a_{i}\right)-F_{0}\left(a_{i-1}\right)=1 / n, i=1, \ldots, n$. If a_{i} are not determined uniquely, we may take any values satisfying the conditions. Put $p_{i}=F\left(a_{i}\right)-F\left(a_{i-1}\right)$ and denote by N_{i} the number of X 's that fall into the interval (a_{i-1}, a_{i}]. Then, of course, $\sum_{i=1}^{n} p_{i}=1$ and $\sum_{i=1}^{n} N_{i}=N$. Denote, further, by W the space consisting of n-dimensional lattice points (k_{1}, \ldots, k_{n}), where k_{i} is regarded as the observęd value of the random variable N_{i} (therefore, $\sum_{i=1}^{n} k_{i}=N$).

The test is equivalent with determining the set (acceptance region) in the space W. The set S in W will be called symmetric provided that, if S contains the point (k_{1}, \ldots, k_{n}), then S contains also all its permutations $\left(k_{1}{ }^{\prime}, \ldots, k_{n}{ }^{\prime}\right)$. We shall say, finally, that S satisfies condition O when, if S contains (k_{1}, \ldots, k_{n}) such as $k_{j} \geq k_{i}+2$, then S contains also ($k_{1}, \ldots, k_{i}+1, \ldots, k_{j}-1, \ldots, k_{n}$). It is easily verified that if S is symmetric the convexity implies the condition O. The converse, however, is not necessarily true. For example, we shall consider, in the case $N=12, n=3$, the set S consisting of nine points shown in Fig. 1 and their permutations. S is symmetric and satisfies the condition O, but is not convex, since the middle point $(7,4,1)$ of the points $(8,2,2),(6,6,0)$ does not belong to S.

Fig. 1

2. Theorem of unbiasedness.

Theorem. If the acceptance region R of the test is symmetric and satisfies the condition O, the test of H_{0} is unbiased against any alternative.

Proof. Putting

