On a Two-Dimensional Space of Projective Connection Associated with a Surface in R_3

By Matsuji TSUBOKO

Denote by \mathbf{R}_n an *n*-dimensional space of projective connection. First, in this paper, we treat the development of a curve in \mathbf{R}_2 by a method analogous to the theory on an ordinary projective plane curve. Next, we associate \mathbf{R}_2 with a surface S in \mathbf{R}_3 by a method of projection and investigate some properties of \mathbf{R}_2 and other relations between \mathbf{R}_2 and \mathbf{R}_3 .

1. Let \mathbf{R}_n be an *n*-dimensional space of projective connection, in which a moving point is determined by a system of coordinates (u^i) . If a natural frame¹⁾ of reference $[A_0A_1 \cdots A_n]$ is associated with the moving point A_0 in the tangential space of *n* dimensions at A_0 of \mathbf{R}_n , the infinitesimal displacement of the frame is given by

(1) $dA_{\alpha} = \omega_{\alpha}^{\beta}A_{\beta}, \quad \omega_{\alpha}^{\beta} = \prod_{ak}^{\beta} du^{k},$

and

(2)
$$\begin{cases} \omega_0^0 = 0, \quad \omega_0^i = du^i, \\ \prod_{ik}^i = 0, \quad \prod_{\beta 0}^a = \prod_{0\beta}^a = \delta_{\beta}^a, \end{cases}$$

where we denote by Greek letters α , β , etc. the indices which take the values $0, 1, \dots, n$, and by Latin letters i, j, etc. those which take $1, 2, \dots, n$.

Consider a curve C passing through A_0 of R_n , where u^i are functions of a parameter t. Then we have along C

$$(3) \quad \frac{dA_{\alpha}}{dt} = p_{\alpha}^{\beta}A_{\beta}, \quad \omega_{\alpha}^{\beta} = p_{\alpha}^{\beta}dt,$$

and

$$egin{aligned} &rac{d^2A_0}{dt^2} = p_0^ip_0^0A_0 + \left(rac{dp_0^i}{dt} + p_0^hp_h^i
ight)A_i \ , \ &rac{d^3A_0}{dt^3} = \left\{rac{d}{dt}\left(p_0^ip_0^0
ight) + p_k^0\!\!\left(rac{dp_0^k}{dt} + p_0^hp_h^k
ight)
ight\}A_0 \ &+ \left\{rac{d}{dt}\left(rac{dp_0^i}{dt} + p_0^hp_h^i
ight) + p_0^ip_0^hp_h^0 + p_k^i\!\!\left(rac{dp_0^k}{dt} + p_0^hp_h^k
ight)
ight\}A_i \ , \end{aligned}$$