Osaka Mathematical Journal Vol. 4, No. 1, May, 1952

Linear-Order on a Group

By Masao Ohnishi

Let us discuss here under what condition a group admits a linearorder.¹⁾ Related ideas to my previous $paper^{2)}$ will be adopted.

Preliminaries. A partial-order on a group G is wholly determined by such a subset g of G — we shall call it a (partial-) *ordering set* briefly that satisfies the following two conditions:

1) g is an invariant sub-semigroup with 1,

2) g cannot contain an element (± 1) together with its inverse.

A linear-ordering set is therefore characterized by one more additional condition :

3) It contains either x or x^{-1} for any x of G.

For a finite subset $\{x_1, \ldots, x_n\}$ of G and an invariant sub-semigroup g of G the invariant sub-semigroup generated by x_1, \ldots, x_n and g shall be denoted by $g(x_1, \ldots, x_n)$. Especially the invariant sub-semigroup generated by $\{x_1, \ldots, x_n\}$ alone is (x_1, \ldots, x_n) .

Theorem. The following three conditions are mutually equivalent:

(I) G admits a linear-order.

(II) For any finite subset $\{x_1, \ldots, x_n\}$ of G the intersection of all possible $2^n g(x_1^{\varepsilon_1}, \ldots, x_n^{\varepsilon_n})$, where $\varepsilon_i = \pm 1$, is equal to 1.

(III) For any element a of G there exists an ordering set g_a containing a and having the property:

(*) If $xy (\pm 1)$ belongs to \mathfrak{g}_a , then either x or y belongs to \mathfrak{g}_a .

Such an ordering set in (III) will be called (*)-ordering set.

Proof. We shall divide this into three parts:

(I) \rightarrow (II). By a linear-order on G every element x of G attains a sign $\varepsilon^0 = \pm 1$ in such a way that x^{ε_0} is ≥ 1 with respect to this order. Then obviously all elements of $(x_1^{\varepsilon_1^0}, \ldots, x_n^{\varepsilon_n^0})$ are ≥ 1 , and all elements of $(x_1^{-\varepsilon_1^0}, \ldots, x_n^{-\varepsilon_n^0})$ are ≤ 1 . Therefore the intersection of these two sets is already equal to 1.

¹⁾ Cf. K. Iwasawa, On linearly ordered groups. Journ. of Math. Soc. of Japan, 1 (1948).

Also, P. Lorenzen, Ueber halbgeordnete Gruppen. Math. Zeits. 52 (1949).

²⁾ M. Ohnishi, On linearization of ordered groups. Osaka Math. Journ. 2 (1950).