Osaka Mathematical Journal Vol. 4, No. 1, May, 1952

On Cartesian Product of Compact Spaces

By Hidetaka TERASAKA

While the Cartesian product of any number of compact (= bicompact) spaces is again compact by Tychonoff's theorem [1], there is an \aleph_0 -compact (= compact in the sense of Fréchet) space R whose product $R \times R$ is not \aleph_0 -compact,¹⁾ as will be shown in the present note. These circumstances will be somewhat clarified by the introduction of a concept of \aleph_{α} -ultracompactness.

1. Let *M* be a given set of points and let $M = \{M_{\lambda}\}$ be an ultrafilter [2], i.e., a collection of subsets M_{λ} of *M* such that

(i) M has the finite intersection property, i.e., any finite number of M_{λ} 's have a non-void intersection,

(ii) M is maximal with respect to the property (i), i. e., should any subset M' of M distinct from any one of M_{λ} be added to M, then the resulting collection M+M' fails to satisfy the condition (i).

If \aleph_{α} denotes the lowest of the potencies of M_{λ} , we say that M is of potency \aleph_{α} . A T_1 -space will be called \aleph_{α} -ultracompact, if every ultrafilter of potency \aleph_{α} has a cluster point. Then the proof of C. Chevalley and O. Frink [3] for Tychonoff's theorem yields at once the following

Theorem. The Cartesian product of any number of \aleph_{α} -ultracompact spaces is itself \aleph_{α} -ultracompact.

Here arises the question, whether or not, if R is \aleph_{α} -compact, i.e., if every subset $M \subset R$ of potency \aleph_{α} has a cluster point, but if R is not \aleph_{α} -ultracompact, then the product IIR is not necessarily \aleph_{α} -compact. As a partly solution of this question we construct in the following an example of an \aleph_0 -compact but not \aleph_0 -ultracompact space R, whose product $R \times R$ is not \aleph_0 -compact.

¹⁾ The question whether or not such an \aleph_0 -compact space exists was raised by M. Ohnishi of Osaka University and answered by me in Sizyo Sugaku Danwakai (June 10, 1947): An example of an \aleph_0 -compact space R whose product $R \times R$ is not \aleph_0 -compact (In Japanese). After I had written the present note I have been informed by Ohnishi that the question is originally that of Čech, for which an answer is announced to have been given by Novák in Časopis propěst. mat. a fys. 74 (1950).