On the Independence of Quadratic Forms in a Non-Central Normal System*

By Junjiro Ogawa

The problem on the independence of quadratic forms in a normal system originates from the famous treatise of W. G. Cochran ¹⁾. Cochran proved the following theorem: "Let x_1, x_2, \ldots, x_n be independently distributed according to the identical normal law $N(0, 1)^{2}$, q_1, q_2, \ldots, q_m being m quadratic forms of x_1, x_2, \ldots, x_n , and their ranks r_1, r_2, \ldots, r_m respectively. If $\sum_{1}^{m} q_j = \sum_{1}^{n} x_i^2$, then the necessary and sufficient condition for q_1, q_2, \ldots, q_m to be independent statistically is that $\sum_{1}^{m} r_j = n$. When these conditions are satisfied, then q_1, q_2, \ldots, q_m are distributed independently according to the chi-square distributions of degrees of freedom r_1, r_2, \ldots, r_m respectively". Then, in 1940, W. G. Madow ³⁾ proved the generalization of this theorem for the non-central case, and he obtained the same condition.

On the other hand, A. T. Craig⁴⁾, H. Hotelling⁵⁾ and H. Sakamoto⁶⁾ have extended the theorem in the other direction, their point being as follows: Let x_1, \ldots, x_n be independently distributed according to the normal law N(0, 1) and written as a vector $\underline{x}=(x_1, \ldots, x_n)$, and furthermore let A and B be two real ymmetric matrices, then the necessary and sufficient condition for two quadratic forms $q_1=\underline{x}A\underline{x}'$ and $q_2=\underline{x}B\underline{x}'$ to be independent statistically is AB=0. But their proofs were insufficient, and K. Matsushita⁷⁾ and we⁸⁾ gave the complete proofs.

In this note we shall generalize the last theorem for the non-central case, and prove the following two theorems and show one example of their applications.

§1. THEOREMS.

Theorem I. Let $x_1, x_2, ..., x_n$ be normally and independently distributed with means $a_1, a_2, ..., a_n$ respectively and with the common variance unity. If we denote *n* random variables $x_1, x_2, ..., x_n$ by a vector notation $\underline{x} = (x_1, x_2, ..., x_n)$, and make two quadratic forms $q_1 =$