Note on the Markoff's Theorem on Least Squares ⁱ)

By Junjiro Ogawa

The purpose of this note is to give a simple proof of the extension of the famous Markoff's theorem on least squares by J. Neyman²⁾ and F. N. David, which is very useful especially in the theory of sampling³⁾.

Theorem. Let *n* random variables x_1, x_2, \ldots, x_n

(a) be independently distributed ⁴⁾, and

(b) their means be linearly restricted with $s(\leq n)$ unknown parameters p_1, p_2, \ldots, p_s with known coefficients, i.e.

$$E(x_i) = a_{i_1} p_1 + a_{i_2} p_2 + \dots + a_{i_s} p_s, i = 1, 2, \dots, n,$$
 (1)

where the coefficients a_{ij} , i=1, 2, ..., n; j=1, 2, ..., s are known constants.

(c) The rank of the coefficient matrix

$$A = \begin{pmatrix} a_{11}a_{12} \dots a_{1s} \\ a_{21}a_{22} \dots a_{2s} \\ \dots \\ a_{n1}a_{n2} \dots a_{ns} \end{pmatrix}$$
(2)

is equal to s.

(d) Further, let the variance σ_i° of x_i be

$$\sigma_i^2 = \frac{\sigma^2}{P_i}, \quad i = 1, 2, \dots, n,$$
 (3)

where P_1, P_2, \ldots, P_n are known constants and σ unknown.

If the above conditions are satisfied, then the following two statements (α) and (β) hold.

(α) The best unbiased linear estimate ⁵) of the linear form

$$\theta = b_1 p_1 + b_2 p_2 + \dots + b_s p_s \tag{4}$$

with known coefficients b_1, b_2, \ldots, b_s is

$$F = b_1 p_1^0 + b_2 p_2^0 + \dots + b_s p_s^0 , \qquad (5)$$