Mixing Up Property of Brownian Motion.

By Hirotada ANZAI.

1. Let X be the space of Brownian motions. Any element x of X is to be considered here as a set function defined for intervals on the infinite line. We denote the value of x for the interval (a, b) by x(b)-x(a), but it is to be noticed that x(a) or x(b) alone has no meaning in our case. Let $\varphi_t (-\infty < t < \infty)$ be the flow of translations on X defined by $\varphi_t x(a, b) = x(a+t, b+t)$, that is, $x' = \varphi_t x$ means that x'(b)-x'(a) = x(b+t)-x(a+t). It is well known that φ_t is strongly mixing.¹⁾

THEOREM 1. Let X be the space of Brownian motions as set functions and let φ_t be the flow of translations on X above defined. Then for any measurable ergodic flow φ_t on a measure space Y, the skew product flow T_t , which is defined in the following way on the direct product measure space Ω of X and Y, is strongly mixing.

 $T_t(x, y) = (\varphi_t x, \psi_{x(t)-x(0)} y), \text{ where } (x, y) \in \Omega = X \times Y.$

At first, it is easily verified that for any fixed t, T_t is a measure preserving transformation on Ω , from the fact that for any null set N in the usual Lebesgue measure space of the infinite line, the set $\{x \mid x(t)-x(0) \in N\}$ is a null set in X.²⁾ And further we may show in the same way that T_t is a measurable flow on Ω from the fact that the (t, x)-set $\{(t, x) \mid x(t)-x(0) \in N\}$ is a set of (t, x)-measure zero.²⁾ In order to prove that T_t is strongly mixing, it is sufficient to show that

(1) $\lim_{t \to \infty} \iint f(\varphi_t x) f_1(\psi_{x(t)-x',0}y) g(x) g_1(y) dxdy$ $= \iint f(x) f_1(y) dxdy \iint g(x) g_1(y) dxdy$

holds for any f(x), $g(x) \in L^2(X)$ and $f_1(y)$, $g_1(y) \in L^2(Y)$.

Let E_{λ} be the spectral resolution of the one-parameter group of unitary transformations of $L^{2}(Y)$, which corresponds to the flow ψ_{t} on Y, and put $v(\lambda) = (E_{\lambda}f_{1}, g_{1})$. Then the left hand side of (1) is equal to

¹⁾ E. HOPF, Ergodentheorie, Berlin, 1937, p. 59 §16. Masstheorie im Raum der additiven Mengenfunktionen. Das Spektrum der Translationen.

²⁾ See (7) of 2 of this note.