On the Quotient Semi-Group of a Noncommutative Semi-Group

By Kentaro MURATA

In this short note we remark, following K. Asano¹), that a noncommutative semi-group g with a certain condition can be embedded into the quotient semi-group G. The necessary and sufficient condition for the existence of the quotient semi-group is the same as the case of a ring. Moreover if g is a ring, we can define the addition in G in a natural manner and G is just the quotient ring of g.

Definition 1. An element λ in a semi-group g is called *regular*, if the following two conditions are satisfied: 1) $a\lambda = b\lambda(a, b \in g)$ implies a = b and 2) $\lambda a = \lambda b(a, b \in g)$ implies a = b.

If g has the unit, the elements having their inverse elements in \mathfrak{g} are obviously regular.

In the following we assume that a semi-group g has regular elements. It is clear that all regular elements in g form a sub-semi-group g^* of g.

Definition 2. Let m be a sub-semi-group of g^* . If a semi-group G which contains g satisfies the next three conditions, we call G a left quotient semi-group of g by m.

(1) G has a unit 1.

(2) Every element α in m has an inverse α^{-1} in G.

(3) For every x in G, there exists α in m such that αx is contained in g.

In particular if $m = g^*$, we call G a left quotient semi-group of g. According to Definition 2, every element s in G is clearly expressible in the form $s = \alpha^{-1}a$, where $\alpha \in m$ and $a \in g$. If g has a left (or right) unit e, then $e = 1.^{\circ}$)

Lemma 1. If for every a in g and every α in m there exist α' in m and a' in g such that $\alpha' a = a' \alpha$ then, for any n elements $\lambda_i \in m$ $(i=1,\ldots, n)$ there exist n elements $c_i \in g$ $(i=1,\ldots, n)$ satisfying the following condition:

2) $e = e = 1 = e \lambda \lambda^{-1} = \lambda \lambda^{-1} = 1$ $(e = \lambda e = \lambda^{-1} \lambda e = \lambda^{-1} \lambda = 1)$.

K. Asano, Arithmetische Idealtheorie in nichtkommutativen Ringen, Japan. Journ. Math. 16 (1939); Über die Quotientenbildung von Schiefringen, Journ. Math. Soc. Japan 1 (1949).