Contribution to the problem of stability

By Tatsuji Kudo

I. INTRODUCTION

1. H. Hopf and E. Pannwitz¹) introduced the notion of *stability*²) and raised several questions, the most important of which reads: "Can we characterize the stability in terms of the homology theory?".

Confining themselves to the homogeneous n-complex K^n , they obtained the following theorems:

THEOREM A. A linear graph K^{i} is stable if and only if it has no free side.

THEOREM B. A cyclic³) complex K^n is stable for any dimension n.

THEOREM C. For $n \ge 3$ a stable complex K^n is cyclic, provided that it is simply connected.

Recently Professor A. Komatu has reasonably conjectured that to these theorems can be given the following complete and unified form:

THEOREM D. For a locally finite homogeneous *n*-complex K^n $(n \neq 2)$ stability is equivalent to the cyclicity in the sense of local coefficients⁴).

The main purpose of this paper is to prove THEOREM D by generalizing the Hopf-Pannwitz's lemmas based on ordinary coefficients to those based on local coefficients.

¹) H. Hopf and E. Pannwitz, Über stetige Deformationen von Komplexen in sich, Math. Ann., 108, 1932.

²) A topological space R is called stable if for every deformation f_t of R through itself no point of R can get rid of the covering by the image $f_1(R)$, or more simply, if R can never be deformed into its proper subspace.

³) An *n*-complex K^n is called cyclic, if each *n*-simplex σ_i^n is contained in at least one *n*-cycle with suitable coefficients.

^{4) •}See, IV. § 8.