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Introduction

A classification of (normal) affine surfaces admitting aC∗-action was given e.g.,
in [5, 6, 21, 22, 1, 25] and [12]–[14]. Here we obtain a simple alternative description
of normal affine surfaces with aC∗-action in terms of their graded coordinate rings
as well as by defining equations. Our approach is based on a generalization of the
Dolgachev-Pinkham-Demazure construction [11, 22, 10]. Recall (see [12]–[14]) that a
C∗-action on a normal affine surface is calledelliptic if it has a unique fixed point
which belongs to the closure of every 1-dimensional orbit,parabolic if the set of its
fixed points is 1-dimensional, andhyperbolic if has only a finite number of fixed
points, and these fixed points are of hyperbolic type, that iseach one of them belongs
to the closure of exactly two 1-dimensional orbits.

In the elliptic case, the complement∗ of the unique fixed point in is fibered
by the 1-dimensional orbits over a projective curve . In the other two cases is
fibered over an affine curve , and this fibration is invariant under theC∗-action.

Vice versa, given a smooth curve and aQ-divisor on , the Dolgachev-
Pinkham-Demazure construction provides a normal affine surface = with a
C∗-action such that is just the algebraic quotient of∗ or of , respectively. This
surface is of elliptic type if is projective and of parabolictype if is affine.

We remind this construction in Sections 1 and 2 below. In Section 3 we use it
to present any normal affine surface with a parabolicC∗-action as a normalization
of the surface − ( ) = 0 in A3

C for a certain ∈ N and a certain polynomial
∈ C[ ] (see Theorem 3.11).

In Section 4 we deal with the hyperbolic case. We generalize the Dolgachev-
Pinkham-Demazure construction in order to make it work for any hyperbolic
C∗-surface. Instead of oneQ-divisor on a smooth affine curve as before, it in-
volves now twoQ-divisors + and − on . By our resultisomorphism classes of
normal affine hyperbolicC∗-surfaces are in1-1-correspondence to equivalence classes
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