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Introduction

A classification of (normal) affine surfaces admittingCa-action was given e.g.,
in [5, 6, 21, 22, 1, 25] and [12]-[14]. Here we obtain a simpleraative description
of normal affine surface¥  with @*-action in terms of their graded coordinate rings
as well as by defining equations. Our approach is based on erajzation of the
Dolgachev-Pinkham-Demazure construction [11, 22, 10caRdsee [12]-[14]) that a
C*-action on a normal affine surfadé is calletliptic if it has a unique fixed point
which belongs to the closure of every 1-dimensional orpérabolic if the set of its
fixed points is 1-dimensional, andyperbolicif V has only a finite number of fixed
points, and these fixed points are of hyperbolic type, thataish one of them belongs
to the closure of exactly two 1-dimensional orbits.

In the elliptic case, the complememt* of the unique fixed point inv is fibered
by the 1-dimensional orbits over a projective curge . In thbeo two casesV is
fibered over an affine curv€ , and this fibration is invariandemthe C*-action.

Vice versa, given a smooth curvé  andQ@divisor D on C, the Dolgachev-
Pinkham-Demazure construction provides a normal affindaserV = Vo p with a
C*-action such thatC is just the algebraic quotientVsf or of V, respectively. This
surfaceV is of elliptic type ifC is projective and of parabotipe if C is affine.

We remind this construction in Sections 1 and 2 below. In i8ecB8 we use it
to present any normal affine surfa¢e  with a parab@licaction as a normalization
of the surfacex? — P(z)y = 0 in A% for a certaind € N and a certain polynomial
P € C[f] (see Theorem 3.11).

In Section 4 we deal with the hyperbolic case. We generaliee Dolgachev-
Pinkham-Demazure construction in order to make it work fary ahyperbolic
C*-surface. Instead of on@-divisor D on a smooth affine curv€ as before, it in-
volves now twoQ-divisors D, and D_ on C. By our resultisomorphism classes of
normal affine hyperbolidC*-surfaces are inl-1-correspondence to equivalence classes
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