A CRITERION OF EXACTNESS OF THE CLEMENS-SCHMID SEQUENCES ARISING FROM SEMI-STABLE FAMILIES OF OPEN CURVES

MASANORI ASAKURA

(Received April 4, 2002)

1. Introduction

Let $\pi: X \to \Delta$ be a semistable family of projective algebraic varieties over the unit disk. In other words, π is flat and projective over Δ , smooth over $\Delta^* = \Delta - \{0\}$, and the central fiber $Y = \pi^{-1}(0)$ is a divisor with normal crossings without multiple components. We write $X_t := \pi^{-1}(t)$ for $t \in \Delta^*$ and $X^* := X - Y$. There is the Wang exact sequence

(1.1)
$$\cdots \to H^q(X^*, \mathbf{Q}) \to H^q(X_t, \mathbf{Q}) \xrightarrow{N} H^q(X_t, \mathbf{Q}) \to H^{q+1}(X^*, \mathbf{Q}) \to \cdots,$$

and the localization exact sequence

(1.2)
$$\cdots \to H^q_Y(X, \mathbf{Q}) \to H^q(X, \mathbf{Q}) \to H^q(X^*, \mathbf{Q}) \to H^{q+1}_Y(X, \mathbf{Q}) \to \cdots$$

Here *N* denotes the log monodromy around $\Delta^* = \Delta - \{0\}$. Combining those sequences and the natural isomorphism $H^q(X, \mathbf{Q}) \simeq H^q(Y, \mathbf{Q})$, we obtain a sequence (1.3)

$$\cdots \to H^{q-2}(X_t, \mathbf{Q}) \to H^q_Y(X, \mathbf{Q}) \to H^q(Y, \mathbf{Q}) \to H^q(X_t, \mathbf{Q}) \xrightarrow{N} H^q(X_t, \mathbf{Q}) \to \cdots$$

This is called the *Clemens-Schmid sequence*. A theorem of Clemens and Schmid says that the sequence (1.3) is exact $([1, \S 3])$. In particular, the first piece

(1.4)
$$H^q(Y, \mathbf{Q}) \longrightarrow H^q(X_t, \mathbf{Q}) \xrightarrow{N} H^q(X_t, \mathbf{Q})$$

is called the local invariant cycle theorem ([3, (5.12)]).

In [2, (12.3.1)], S. Usui et al. proposed a problem whether the Clemens-Schmid sequence (1.3) or (1.4) is exact when we remove the assumption that π is proper. In this paper, we give a necessary and sufficient condition for that the sequence (1.4) is exact when π is a semistable family of open curves. In particular, we see that the Clemens-Schmid sequences of non-proper families are not exact in general.

The author would like to express his sincere gratitude to Professor Sampei Usui for stimulating discussions.