CONNECTIVE COVERINGS OF SPACES OF HOLOMORPHIC MAPS

Kohhei YAMAGUCHI

(Received December 10, 2001)

1. Introduction

For each integer $d \geq 0$, we denote by $\operatorname{Hol}_d(S^2, \mathbb{C}P^n)$ the space consisting of all holomorphic maps $S^2 \to \mathbb{C}P^n$ of degree d. The corresponding space of continuous maps is denoted by $\operatorname{Map}_d(S^2, \mathbb{C}P^n)$. We also denote by $\operatorname{Hol}_d^*(S^2, \mathbb{C}P^n)$ (resp. $\Omega_d^2\mathbb{C}P^n$) the subspace of $\operatorname{Hol}_d(S^2, \mathbb{C}P^n)$ (resp. $\operatorname{Map}_d(S^2, \mathbb{C}P^n)$) consisting of all maps $f \in \operatorname{Hol}_d(S^2, \mathbb{C}P^n)$ which preserve the base-points. The space of holomorphic maps are of interest both from a classical and modern point of view (e.g. [1], [3], [6]). It is an elementary and fundamental fact that $\operatorname{Hol}_d(S^2, \mathbb{C}P^n)$ and $\operatorname{Hol}_d^*(S^2, \mathbb{C}P^n)$ are connected spaces. If n=1, the fundamental groups of these spaces are $\mathbb{Z}/2d$ and \mathbb{Z} , repectively ([7], [12]); if $n \geq 2$, these spaces are simply connected and 2(n-1)-connected, respectively. The following more general result was obtained by G. Segal:

Theorem 1.1 ([12]). *If*

$$\begin{cases} i_d \colon \operatorname{Hol}_d(S^2, \mathbb{C}\mathrm{P}^n) \to \operatorname{Map}_d(S^2, \mathbb{C}\mathrm{P}^n) \\ \tilde{i}_d \colon \operatorname{Hol}_d^*(S^2, \mathbb{C}\mathrm{P}^n) \to \Omega_d^2 \mathbb{C}\mathrm{P}^n \end{cases}$$

are inclusion maps, i_d and \tilde{i}_d are homotopy equivalences up to dimension D(d, n) = (2n-1)d.

REMARK. The map $f: X \to Y$ is said to be a homotopy equivalence up to dimension N if $f_*: \pi_k(X) \to \pi_k(Y)$ is bijective when k < N and surjective when k = N.

The principal motivation of this paper derives from the work of Segal ([12]), in which he describes the homotopy types of $\operatorname{Hol}_d(S^2,\mathbb{C}\mathrm{P}^n)$ and $\operatorname{Hol}_d^*(S^2,\mathbb{C}\mathrm{P}^n)$ from the point of view of the infinite dimensional Morse theoretical principle by using a technique of scanning maps ([8], [9], [12]). Now the homotopy types of $\operatorname{Hol}_d^*(S^2,\mathbb{C}\mathrm{P}^n)$ were studied well by several authors ([3], [9], [10]). So in this paper we shall study the homotopy types of $\operatorname{Hol}_d(S^2,\mathbb{C}\mathrm{P}^n)$. We identify $S^2 = \mathbb{C} \cup \infty$ and consider the evaluation fibration sequence $\operatorname{Hol}_d^*(S^2,\mathbb{C}\mathrm{P}^n) \stackrel{j_d}{\to} \operatorname{Hol}_d(S^2,\mathbb{C}\mathrm{P}^n) \stackrel{ev}{\to} \mathbb{C}\mathrm{P}^n$, where the map ev is given by $ev(f) = f(\infty)$ for $f \in \operatorname{Hol}_d(S^2,\mathbb{C}\mathrm{P}^n)$.