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1. Introduction

Let M? be a Riemann surfaceyhich might not be simply connecte8l meromor-
phic mapF fromM? into PSL(2 C) = SL(2, C)/{+id} is a map which is represented
as

(1.2) F = (A B) = \/ﬁ(/:4 B) (AD - BC =1),

C D C D

where A, B, C, D andh are meromorphic functions avi2. Thoughv/4 is a multi-
valued function onM?, F is well-defined as a PSL(Z)-valued mapping.

A meromorphic mapF as in (1.1) is calledrall curve if the pull-back of the
Killing form by F vanishes, which is equivalent to the conaliti that the derivative
F, = OF /0z with respect to each complex coordinate is a degenerataxnmetery-
where. It is well-known that the projection of a null curve RSL(2 C) into the hy-
perbolic 3-spaced® = PSL(2 C)/ PSU(2) gives a constant mean curvature one surface
(see [2, 10Q]). For a non-constant null cure , we define twoomerphic functions

(1.2) G =—=— g =——=——.
(For a precise definition, see Definition 2.1 in Section 2). ¥d G the hyperbolic

Gauss mapof F and g thesecondary Gauss mapespectively [12]. In 1993, Small
[8] discovered the following expression

da db

G——-a G——-D
(1.3) F = G~ V4G , a:= d—G, b= —ga
da ab s
dG dG
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