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1. Introduction

Let 2 be a Riemann surface,which might not be simply connected. A meromor-
phic map from 2 into PSL(2 C) = SL(2 C)/{± id} is a map which is represented
as
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where ˆ , ˆ , ˆ , ˆ and are meromorphic functions on2. Though
√

is a multi-
valued function on 2, is well-defined as a PSL(2C)-valued mapping.

A meromorphic map as in (1.1) is called anull curve if the pull-back of the
Killing form by vanishes, which is equivalent to the condition that the derivative

= ∂ /∂ with respect to each complex coordinate is a degenerate matrix every-
where. It is well-known that the projection of a null curve inPSL(2 C) into the hy-
perbolic 3-space 3 = PSL(2 C)/PSU(2) gives a constant mean curvature one surface
(see [2, 10]). For a non-constant null curve , we define two meromorphic functions
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(For a precise definition, see Definition 2.1 in Section 2). Wecall the hyperbolic
Gauss mapof and thesecondary Gauss map, respectively [12]. In 1993, Small
[8] discovered the following expression
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