ON THE NIELSEN-THURSTON-BERS TYPE OF SOME SELF-MAPS OF RIEMANN SURFACES WITH TWO SPECIFIED POINTS

Dedicated to Professor Hiroki Sato on his 60th birthday

YOICHI IMAYOSHI, MANABU ITO and HIROSHI YAMAMOTO

(Received February 12, 2002)

1. Introduction

1.1. Let *S* be a hyperbolic Riemann surface of analytically finite type, that is, a hyperbolic Riemann surface obtained by removing n_0 distinct points from a closed Riemann surface of genus g_0 with $2g_0 - 2 + n_0 > 0$. Take *n* distinct points p_1, p_2, \ldots, p_n of *S*, and set $\dot{S} = S \setminus \{p_1, p_2, \ldots, p_n\}$. We consider the group of orientation preserving homeomorphisms ω of *S* onto itself which satisfy two conditions (1) $\omega(p_j) = p_j$ for every $j = 1, 2, \ldots, n$, and

(2) ω is isotopic to the identity self-map id of S.

We factor this group by the normal subgroup of homeomorphisms of S onto itself that are isotopic to the identity as self-maps of \dot{S} . Denote the factor group by

 $Isot(S, \{p_1, p_2, ..., p_n\}), \text{ or } Isot(S, n).$

1.2. The purpose of this paper is to classify the elements of Isot(S, n) in the case of n = 2. For n = 1, it is studied by Kra [10]. Our problem and form of the solution are suggested by his beautiful theorem (Theorem 2 of Kra [10]).

Every element $[\omega] \in \text{Isot}(S, n)$ induces canonically an element $\langle \omega|_{S} \rangle$ of the Teichmüller modular group Mod(\dot{S}). Namely, for the Teichmüller space $T(\dot{S})$ of \dot{S} , $\langle \omega|_{S} \rangle$ is an biholomorphic automorphism of $T(\dot{S})$ given by $\langle \omega|_{\dot{S}} \rangle([S, f, R]) = [S, f \circ \omega^{-1}, R]$ for all $[S, f, R] \in T(\dot{S})$. Since the correspondence $\text{Isot}(S, n) \ni [\omega] \mapsto \langle \omega|_{\dot{S}} \rangle \in \text{Mod}(\dot{S})$ is injective, we can classify $[\omega]$ by a classification for the elements of $\text{Mod}(\dot{S})$.

For our classification, we use the following one due to Bers [1] for the elements of Mod(\dot{S}). Let $d_{T(\dot{S})}$ be the Teichmüller distance on $T(\dot{S})$, and set

$$a(\chi) = \inf_{\tau \in T(\dot{S})} d_{T(\dot{S})}(\tau, \chi(\tau)).$$

¹⁹⁹¹ Mathematics Subject Classification : Primary 30F10.