SOME PROPERTIES OF INVERTIBLE SUBSTITUTIONS OF rank *d*, AND HIGHER DIMENSIONAL SUBSTITUTIONS

Hiromi EI

(Received October 3, 2001)

0. Introduction

We denote by \mathcal{A}_d^* (resp., F_d) the free monoid (resp., the free group), with the empty word as unit, generated by an alphabet $\mathcal{A}_d := \{1, 2, \ldots, d\}$ consisting of d letters. We consider an endomorphism σ on F_d , i.e., a group homomorphism from F_d to itself. An endomorphism σ will be referred to as a *substitution* if we can take a nonempty word $\sigma(i) \in \mathcal{A}_d^*$ for all $i \in \mathcal{A}_d$, cf. the first paragraph of Section 1. When is a substitution σ invertible as an endomorphism on F_d ? An answer to this question is known when d = 2, cf. Proposition 1. Our objective is to generalize Proposition 1 for arbitrary $d \ge 2$. We introduce a geometrical method in [2]; and we use a general method given in [6], where the so called *higher dimensional substitutions* $E_k(\sigma)$ ($0 \le k \le d$) are established for a given substitution σ on F_d .

Throughout the paper, we denote by Z (resp., N, R) the set of integers (resp., positive integers, real numbers), and by End(F_d) (resp., Sub(F_d), Aut(F_d), IS(F_d)) the set of endomorphisms (resp., substitutions, automorphisms, invertible substitutions) on F_d .

Let $d \ge 2$ be an integer. We mean by $(\mathbf{x}, i_1 \land \cdots \land i_k)$ the positively oriented unit cube of dimension k translated by \mathbf{x} in the Euclidean space \mathbf{R}^d :

$$(\mathbf{x}, i_1 \wedge \dots \wedge i_k) \coloneqq \{\mathbf{x} + t_1 \mathbf{e}_{i_1} + \dots + t_k \mathbf{e}_{i_k} \mid 0 \le t_n \le 1, \ 1 \le n \le k\},\$$
$$\mathbf{x} \in \mathbf{Z}^d, \ 0 \le k \le d, \ 1 \le i_1 < \dots < i_k \le d,$$

where $\{e_i\}_{i=1,...,d}$ is the canonical basis of \mathbb{R}^d . In particular, for k = 0, the k dimensional unit cube $(\mathbf{x}, i_1 \wedge \cdots \wedge i_k)$, which will be denoted by (\mathbf{x}, \bullet) , is considered to turn out a point \mathbf{x} . In general, for $\{i_1, i_2, \ldots, i_k\}$ with $1 \le i_m \le d$, $1 \le m \le k$, we define

$$\begin{aligned} & (\mathbf{x}, i_1 \wedge \dots \wedge i_k) \coloneqq 0, \text{ if } i_n = i_m \text{ for some } n \neq m, \\ & (\mathbf{x}, i_1 \wedge \dots \wedge i_k) \coloneqq \epsilon(\tau)(\mathbf{x}, i_{\tau(1)} \wedge \dots \wedge i_{\tau(k)}) \quad (1 \leq i_{\tau(1)} < \dots < i_{\tau(k)} \leq d), \quad \text{otherwise,} \end{aligned}$$

where τ is a permutation on $\{1, \ldots, k\}$, and $\epsilon(\tau)$ is the signature of τ , which designates the orientation. We put

$$\Lambda_0 \coloneqq \mathbf{Z}^d \times \{\bullet\},\$$