THE SPACE OF LOOPS ON THE EXCEPTIONAL LIE GROUP E_6

MASAKI NAKAGAWA

(Received November 15, 2001)

1. Introduction

Let G be a compact 1-connected simple Lie group and ΩG the space of loops on G. As is well known ΩG is a homotopy commutative H-space and its integral homology $H_*(\Omega G)$ has no torsion and no odd dimensional part ([2]). Therefore $H_*(\Omega G)$ becomes a commutative Hopf algebra over the integers Z. In [3] R. Bott introduced a "generating variety" and determined the Hopf algebra structure of $H_*(\Omega G)$ explicitly for G = SU(n), Spin(n) and G_2 . In [11] T. Watanabe determined $H_*(\Omega F_4)$ in a similar way. On the other hand A. Kono and K. Kozima determined $H_*(\Omega Sp(n))$ by different method using the Bott periodicity ([6]).

In this paper we carry out the Bott's program for $G = E_6$, where E_6 is the compact 1-connected exceptional Lie group of rank 6 and determine the Hopf algebra structure of $H_*(\Omega E_6)$ explicitly.

Let ψ be the coproduct of $H_*(\Omega G)$ induced by the diagonal map $\Omega G \longrightarrow \Omega G \times \Omega G$. To avoid the cumbersome notation, following [11] we introduce a map $\tilde{\psi}: H_*(\Omega G) \longrightarrow H_*(\Omega G) \otimes H_*(\Omega G)$ satisfying

$$\psi(\sigma) - (\sigma \otimes 1 + 1 \otimes \sigma) = \tilde{\psi}(\sigma) + T \tilde{\psi}(\sigma) \text{ for } \sigma \in H_*(\Omega G)$$

where $T: H_*(\Omega G) \otimes H_*(\Omega G) \longrightarrow H_*(\Omega G) \otimes H_*(\Omega G)$ is defined by

$$T(\sigma \otimes \tau) = \begin{cases} \tau \otimes \sigma & \text{ for } \sigma \neq \tau, \\ 0 & \text{ for } \sigma = \tau. \end{cases}$$

Note that $\tilde{\psi}(\sigma) = 0$ if and only if $\sigma \in PH_*(\Omega G)$, where $PH_*(\Omega G)$ denotes the primitive module of the Hopf algebra $H_*(\Omega G)$.

Then our main results are stated as follows:

Theorem 1.1. The Hopf algebra structure of $H_*(\Omega E_6)$ is given as follows: (i) As an algebra

$$H_{*}(\Omega E_{6}) = \mathbb{Z}[\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}, \sigma_{7}, \sigma_{8}, \sigma_{11}]/(\sigma_{1}^{2} - 2\sigma_{2}, \sigma_{1}\sigma_{2} - 3\sigma_{3})$$

where $deg(\sigma_i) = 2i$.