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1. Introduction

Throughout this paper, the base field is the real numBeend all semialgebraic
maps are assumed to be continuous. For general terminoludjth@ theory of semi-
algebraic sets we refer the reader to [1].

Let G be a compact semialgebraic group. One can see easilyetleay com-
pact semialgebraic group has a Lie group structure, andecsely, every compact Lie
group has a semialgebraic group structuresémialgebraic representationf G is,
by definition, a semialgebraic homomorphigmm G — GL(n, R) for somen . In this
caseR"” equipped with the linear action af via is denoted byR"(p) and called a
semialgebraic representation spacé G. A semialgebraicG -seis a G -invariant semi-
algebraic set in some finite dimensional semialgebraicesspritation space ai . One
may define a semialgebraiG@ -set as a semialgebraic set witmélgebraic action
of G, but two definitions are equivalent wheh is semialgelatdicisomorphic to a
semialgebraic subgroup of some GLR), see [17, Thoerem 1.1]. Note that GLR)
is a semialgebraic set i, R} = R¥* where M, R) denotes the set of all x k real
matrices. AG -equivariant semialgebraic map between sgetimhicG -sets is called a
semialgebraicG -map

The simple homotopy theory and the theory of Whitehead dossihave equivari-
ant generalizations in the topological category, see &p.Ifi this paper we consider
the equivariant generalizations of them to the semialdgelrategory. Namely, we de-
fine the equivariant Whitehead group of a semialgebéaic asetthe Whitehead tor-
sion of aG -homotopy equivalence between semialgebfaic s.-8&breover, we prove
the semialgebraic invariance of the equivariant Whitehiasion.

The basic ingredients for the development are the existerican equivariant
semialgebraiaG -CW complex structure of a semialgebcic t (Beoposition 2.2) and
equivariant semialgebraic homotopy theory in [16]. We rdmthat the (equivariant)
Whitehead group is defined on a comple@ ( -) CW complex [6, HR}wever, in
general, a semialgebrai@ -set has a finite open -CW complagtste which is not
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