Chiang, Y. Osaka J. Math. **39** (2002), 723–752

ELEMENTARY INTERSECTION NUMBERS ON PUNCTURED SPHERES

YUNGYEN CHIANG

(Received October 6, 2000)

Introduction

According to Thurston, for any analytically finite Riemann surface \mathcal{R} , the set $\overline{\mathcal{G}}(\mathcal{R})$ of all projective geodesic laminations in \mathcal{R} can be made into a topological space homeomorphic to a sphere of dimension depending on the topology of \mathcal{R} . Understanding the space $\overline{\mathcal{G}}(\mathcal{R})$ is important for various approaches to the Teichmüller space and the mapping class group of \mathcal{R} . The space $\overline{\mathcal{G}}(\mathcal{R})$ was then investigated by several authors from many different points of view. See [3–10], [12, 13, 15], and references there in.

In this paper, we consider the space $\overline{\mathcal{G}}_n = \overline{\mathcal{G}}(\Sigma_n)$ for any integer $n \ge 4$, where Σ_n is an *n*-punctured sphere endowed with a hyperbolic metric. Note that $\overline{\mathcal{G}}_n$ is homeomorphic to a sphere of dimension 2n - 7.

This work was an attempt to generalize the projective coordinates defined in [3, 4] to an arbitrary $\overline{\mathcal{G}}_n$. This work and that of Keen, Parker and Series [10] are essentially based on cutting sequence technique developed by Birman and Series [2], and complement the works of Masur and Minsky [12, 13].

Let \mathcal{G}_n be the set of all simple closed geodesics on Σ_n . For n = 4 or 5, the author has defined a set of projective coordinates for \mathcal{G}_n so that the completion of these coordinates parametrize $\overline{\mathcal{G}}_n$, (see [3, 4]). The coordinates of each $\gamma \in \mathcal{G}_n$ are geometric intersection numbers of γ with 2(n - 3) fixed geodesics in \mathcal{G}_n , and read off directly from the topology of γ . Moreover, these coordinates have three remarkable applications. First, the geometric intersection number of any two geodesics in \mathcal{G}_n can be formulated explicitly in terms of the corresponding coordinates. Secondly, the coordinates of each $\gamma \in \mathcal{G}_n$ determine a canonical expression of γ as a word in a given set of generators for the fundamental group $\pi_1(\Sigma_n)$. Finally, the coordinates of each $\gamma \in \mathcal{G}_n$ are related to trace polynomials of the transformations corresponding to γ in a family of regular *B*-groups uniformizing Σ_n .

For an arbitrary $n \ge 5$, following [3, 4], we shall choose n-3 fixed triples $(\gamma_i^1, \gamma_i^2, \gamma_i^3)$ of geodesics in \mathcal{G}_n $(1 \le j \le n-3)$, and compute the geometric intersec-

The work was partially supported by a grant from the National Science Council of the Republic of China.