Kajitani, K., Wakabayashi, S. and Yagdjian, K. Osaka J. Math. **39** (2002), 447–485

THE HYPERBOLIC OPERATORS WITH THE CHARACTERISTICS VANISHING WITH THE DIFFERENT SPEEDS

KUNIHIKO KAJITANI, SEIICHIRO WAKABAYASHI and KAREN YAGDJIAN

(Received August 11, 2000)

0. Introduction

Consider for the partial differential operator

$$P(t, D_t, D_x) \coloneqq \sum_{j+|\alpha| \le m} a_{j,\alpha}(t) D_t^j D_x^{\alpha}, \qquad t \in [0, T], \quad x \in \mathbb{R}^n,$$

with coefficients $a_{j,\alpha}(t) \in C^1([0, T])$ the Cauchy problem with the data prescribed at t = s,

(0.1)
$$\begin{cases} P(t, D_t, D_x)u(t, x) = f(t, x), & t \in [0, T], & x \in \mathbb{R}^n, \\ D_t^j u(s, x) = u_j(x), & j = 0, \dots, m-1, & x \in \mathbb{R}^n, \end{cases}$$

where $s \in [0, T]$. For the principal symbol $P_m(t, \lambda, \xi)$ of the operator P defined by

$$P_m(t,\lambda,\xi) := \sum_{j+|\alpha|=m} a_{j,\alpha}(t)\lambda^j \xi^\alpha$$

we assume that for all $t \in [0, T]$, $\xi \in \mathbb{R}^n$, the following representation

(0.2)
$$\begin{cases} P_m(t,\lambda,\xi) = \prod_{j=1}^m (\lambda - \lambda_j(t,\xi)), \\ |\lambda_j(t,\xi) - \lambda_k(t,\xi)| \ge C\lambda_j(t)|\xi|, \quad j < k \end{cases}$$

with the real-valued functions $\lambda_j(t, \xi)$, j = 1, ..., m, and with non-negative continuous functions $\lambda_j(t)$, j = 1, ..., m, $\lambda_j \in C([0, T])$, holds. Thus the operator $P(t, D_t, D_x)$ is a hyperbolic operator with the characteristics $\lambda_j(t, \xi)$, j = 1, ..., m. We make also the assumptions

(0.3)
$$\begin{aligned} |\partial_t^k a_{j,\alpha}(t)| &\leq C\lambda_1(t) \cdots \lambda_{|\alpha|}(t) \left(\frac{\lambda_{|\alpha|}(t)}{\Lambda_{|\alpha|}(t)}\right)^k, \\ 1 &\leq |\alpha|, \quad j+|\alpha|=m, \quad k=0,1, \end{aligned}$$