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1. Introduction

Let us recall some results about linear and semilinear wave equations. We examine
the Cauchy problems

2 = ( ) (0 ) = 0( ) (0 ) = 1( )(1.1)

2 = 0 (0 ) = 0( ) (0 ) = 1( )(1.2)

where2 = ∂2−△, ( ) ∈ R × R and ∈ ∞ with (0) = 0. We suppose that the
initial data 0, 1 satisfy 0 ∈ , 1 ∈ −1 for some > /2 + 1. Then it is known
that solutions exist in ([0 ] )∩ 1

(
[0 ] −1

)
for some small > 0.

Further, we assume that0, 1 belong to ∞ outside some closed set ofR . If sin-
gularities starting from two different points of this set ofsingularities meet, nothing
happens in the linear case. They ignore each other and continue on their track. How-
ever, in the semilinear case, the nonlinear interaction of singularities may generate new
singularities. These are weaker than those of by at least oneSobolev order, which
can be seen immediately as follows: we have2( − ) = ( ) ∈ ([0 ] ); hence
− ∈

(
[0 ] +1

)
.

The aim of this publication is to prove a similar result for weakly hyperbolic
equations whose lower order terms satisfy sharp Levi conditions. To demonstrate the
phenomena which may occur in this setting, we recall a resultof [15]. Let = ( )
be the solution of

(1.3) − 2 − = 0 (0 ) = 0( ) (0 ) = 0 ∈ R

If = 4 + 1 and ∈ N0, then the solution is given by

(1.4) ( ) =
∑

=0

2 (∂ 0)

(
+

2

2

)

with some constants ; and does not vanish. We observe two phenomena. The
first is the loss of regularity: if 0 ∈ , then ( )∈ − . There isno classical


