BOUND STATES OF PERTURBED HAMILTONIANS IN THE STRONG COUPLING LIMIT

JACQUES BARBE

(Received February 4, 2000)

1. Introduction

Let $V \in L^2_{loc}(\mathbb{R}^d)$ be a non negative potential; the now classical Cwikel-Lieb-Rozenblum (CLR) inequality asserts that the number N(V) of negative eigenvalues for the Schrödinger operator $-\Delta - V$ verifies

$$N(V) \le C_d \int V(x)^{d/2} dx,$$

when d > 2. More generally Egorov [7] proved that if the Laplacian is replaced by an elliptic positive differential operator of order 2*l*, the CLR inequality remains valid when d > 2l with d/2 replaced by d/(2l). Recently Rozenblum and Solomiak [13] obtained a general result for a wide class of perturbed hamiltonians $H_0 - V$.

When the RHS in the CLR inequality is finite we can define the number $N(\lambda V)$ of negative eigenvalues for $H_0 - \lambda V$. The principal term of the asymptotic for $N(\lambda V)$ when $\lambda \to +\infty$ was found independently by Birman and Borzov [3] and Martin [10] in the case $d \ge 3$:

$$N(\lambda V) \sim \lambda^{d/2} \int V(x)^{d/2} dx$$

Tamura [15] obtained later on a sharp remainder estimate for d = 3:

$$N(\lambda V) = \lambda^{3/2} \int V(x)^{3/2} dx + O(\lambda)$$
, when $\lambda \to +\infty$,

for very regular potential like $\langle x \rangle^{-m}$ with m > 2. More recently Birman and Solomiak [4] obtained asymptotics for $H_0 = (-\Delta)^l$ and d > 2l (and also for d < 2l but we do not consider this case here).

The aim of this paper is to obtain similar Weyl asymptotics when H_0 is a pseudodifferential operator. Global ellipticity is not required; roughly speaking, we suppose that the complete symbol of H_0 is hypoelliptic and satisfy a condition which looks like ellipticity near $\xi = 0$, see the complete assumptions in 2.1. A typical example is for instance the relativistic Laplacian $H_0 = (-\Delta + 1)^{1/2} - 1$. The class of potentials *V* considered here is less restrictive than those considered in [15].